Advertisement
Article| Volume 25, ISSUE 5, 100798, May 2023

Download started.

Ok

Pathogenic variants in CLXN encoding the outer dynein arm docking–associated calcium-binding protein calaxin cause primary ciliary dyskinesia

Published:January 30, 2023DOI:https://doi.org/10.1016/j.gim.2023.100798

      Abstract

      Purpose

      Primary ciliary dyskinesia (PCD) is a heterogeneous disorder that includes respiratory symptoms, laterality defects, and infertility caused by dysfunction of motile cilia. Most PCD-causing variants result in abnormal outer dynein arms (ODAs), which provide the generative force for respiratory ciliary beating and proper mucociliary clearance.

      Methods

      In addition to studies in mouse and planaria, clinical exome sequencing and functional analyses in human were performed.

      Results

      In this study, we identified homozygous pathogenic variants in CLXN (EFCAB1/ODAD5) in 3 individuals with laterality defects and respiratory symptoms. Consistently, we found that Clxn is expressed in mice left-right organizer. Transmission electron microscopy depicted ODA defects in distal ciliary axonemes. Immunofluorescence microscopy revealed absence of CLXN from the ciliary axonemes, absence of the ODA components DNAH5, DNAI1, and DNAI2 from the distal axonemes, and mislocalization or absence of DNAH9. In addition, CLXN was undetectable in ciliary axonemes of individuals with defects in the ODA-docking machinery: ODAD1, ODAD2, ODAD3, and ODAD4. Furthermore, SMED-EFCAB1-deficient planaria displayed ciliary dysmotility.

      Conclusion

      Our results revealed that pathogenic variants in CLXN cause PCD with defects in the assembly of distal ODAs in the respiratory cilia. CLXN should be referred to as ODA-docking complex–associated protein ODAD5.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      ACMG Member Login

      Are you an ACMG Member? Sign in for online access.

      Subscribe:

      Subscribe to Genetics in Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wallmeier J.
        • Nielsen K.G.
        • Kuehni C.E.
        • et al.
        Motile ciliopathies.
        Nat Rev Dis Primers. 2020; 6: 77https://doi.org/10.1038/s41572-020-0209-6
        • Best S.
        • Shoemark A.
        • Rubbo B.
        • et al.
        Risk factors for situs defects and congenital heart disease in primary ciliary dyskinesia.
        Thorax. 2019; 74: 203-205https://doi.org/10.1136/thoraxjnl-2018-212104
        • Whitfield M.
        • Thomas L.
        • Bequignon E.
        • et al.
        Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia.
        Am J Hum Genet. 2019; 105: 198-212https://doi.org/10.1016/j.ajhg.2019.04.015
        • Brokaw C.J.
        Control of flagellar bending: A new agenda based on dynein diversity.
        Cell Motil Cytoskeleton. 1994; 28: 199-204https://doi.org/10.1002/cm.970280303
        • Aprea I.
        • Raidt J.
        • Höben I.M.
        • et al.
        Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility.
        PLoS Genet. 2021; 17e1009306https://doi.org/10.1371/journal.pgen.1009306
        • Taschner M.
        • Mourão A.
        • Awasthi M.
        • Basquin J.
        • Lorentzen E.
        Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46.
        J Biol Chem. 2017; 292: 7462-7473https://doi.org/10.1074/jbc.M117.780155
        • Takada S.
        • Wilkerson C.G.
        • Wakabayashi K.I.
        • Kamiya R.
        • Witman G.B.
        The outer dynein arm-docking complex: composition and characterization of a subunit (Oda1) necessary for outer arm assembly.
        Mol Biol Cell. 2002; 13: 1015-1029https://doi.org/10.1091/mbc.01-04-0201
        • Fliegauf M.
        • Olbrich H.
        • Horvath J.
        • et al.
        Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia.
        Am J Respir Crit Care Med. 2005; 171: 1343-1349https://doi.org/10.1164/rccm.200411-1583OC
        • Dougherty G.W.
        • Loges N.T.
        • Klinkenbusch J.A.
        • et al.
        DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes.
        Am J Respir Cell Mol Biol. 2016; 55: 213-224https://doi.org/10.1165/rcmb.2015-0353OC
        • Loges N.T.
        • Antony D.
        • Maver A.
        • et al.
        Recessive DNAH9 loss-of-function mutations cause laterality defects and subtle respiratory ciliary-beating defects.
        Am J Hum Genet. 2018; 103: 995-1008https://doi.org/10.1016/j.ajhg.2018.10.020
        • Olbrich H.
        • Häffner K.
        • Kispert A.
        • et al.
        Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry.
        Nat Genet. 2002; 30: 143-144https://doi.org/10.1038/ng817
        • Loges N.T.
        • Olbrich H.
        • Fenske L.
        • et al.
        DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm.
        Am J Hum Genet. 2008; 83: 547-558https://doi.org/10.1016/j.ajhg.2008.10.001
        • Mazor M.
        • Alkrinawi S.
        • Chalifa-Caspi V.
        • et al.
        Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1.
        Am J Hum Genet. 2011; 88: 599-607https://doi.org/10.1016/j.ajhg.2011.03.018
      1. Duriez B, Duquesnoy P, Escudier E, et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A. 2007;104(9):3336-3341. Published correction appears in Proc Natl Acad Sci U S A. 2007;104(15):6490. http://doi.org/10.1073/pnas.0611405104

        • Zariwala M.A.
        • Leigh M.W.
        • Ceppa F.
        • et al.
        Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation.
        Am J Respir Crit Care Med. 2006; 174: 858-866https://doi.org/10.1164/rccm.200603-370OC
        • Liu C.
        • Miyata H.
        • Gao Y.
        • et al.
        Bi-allelic DNAH8 variants lead to multiple morphological abnormalities of the sperm flagella and primary male infertility.
        Am J Hum Genet. 2020; 107: 330-341https://doi.org/10.1016/J.AJHG.2020.06.004
        • Mizuno K.
        • Shiba K.
        • Okai M.
        • et al.
        Calaxin drives sperm chemotaxis by Ca2+-mediated direct modulation of a dynein motor.
        Proc Natl Acad Sci U S A. 2012; 109: 20497-20502https://doi.org/10.1073/pnas.1217018109
        • Mizuno K.
        • Padma P.
        • Konno A.
        • Satouh Y.
        • Ogawa K.
        • Inaba K.
        A novel neuronal calcium sensor family protein, calaxin, is a potential Ca(2+)-dependent regulator for the outer arm dynein of metazoan cilia and flagella.
        Biol Cell. 2009; 101: 91-103https://doi.org/10.1042/BC20080032
        • Mizuno K.
        • Shiba K.
        • Yaguchi J.
        • et al.
        Calaxin establishes basal body orientation and coordinates movement of monocilia in sea urchin embryos.
        Sci Rep. 2017; 710751https://doi.org/10.1038/s41598-017-10822-z
      2. Sasaki K, Shiba K, Nakamura A, et al. Calaxin is required for cilia-driven determination of vertebrate laterality. Commun Biol. 2019;2:226. Published correction appears in Commun Biol. 2019;2:254. http://doi.org/10.1038/s42003-019-0462-y

        • Gui M.
        • Farley H.
        • Anujan P.
        • et al.
        De novo identification of mammalian ciliary motility proteins using cryo-EM.
        Cell. 2021; 184: 5791-5806.e19https://doi.org/10.1016/j.cell.2021.10.007
        • Hjeij R.
        • Onoufriadis A.
        • Watson C.M.
        • et al.
        CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation.
        Am J Hum Genet. 2014; 95: 257-274https://doi.org/10.1016/j.ajhg.2014.08.005
        • Wallmeier J.
        • Shiratori H.
        • Dougherty G.W.
        • et al.
        TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization.
        Am J Hum Genet. 2016; 99: 460-469https://doi.org/10.1016/j.ajhg.2016.06.014
        • Onoufriadis A.
        • Paff T.
        • Antony D.
        • et al.
        Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia.
        Am J Hum Genet. 2013; 92: 88-98https://doi.org/10.1016/j.ajhg.2012.11.002
        • Hjeij R.
        • Lindstrand A.
        • Francis R.
        • et al.
        ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry.
        Am J Hum Genet. 2013; 93: 357-367https://doi.org/10.1016/j.ajhg.2013.06.009
        • Braschi B.
        • Omran H.
        • Witman G.B.
        • et al.
        Consensus nomenclature for dyneins and associated assembly factors.
        J Cell Biol. 2022; 221e202109014https://doi.org/10.1083/JCB.202109014
        • Downs K.M.
        • Davies T.
        Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope.
        Development. 1993; 118: 1255-1266https://doi.org/10.1242/dev.118.4.1255
        • Nöthe-Menchen T.
        • Wallmeier J.
        • Pennekamp P.
        • et al.
        Randomization of left-right asymmetry and congenital heart defects: the role of DNAH5 in humans and mice.
        Circ Genom Precis Med. 2019; 12 (:e002686. http://doi.org/10.1161/CIRCGEN.119.002686)
        • Dougherty G.W.
        • Mizuno K.
        • Nöthe-Menchen T.
        • et al.
        CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module.
        Nat Commun. 2020; 11: 5520https://doi.org/10.1038/s41467-020-19113-0
        • Rompolas P.
        • Patel-King R.S.
        • King S.M.
        Schmidtea mediterranea: a model system for analysis of motile cilia.
        Methods Cell Biol. 2009; 93: 81-98https://doi.org/10.1016/S0091-679X(08)93004-1
        • Sandmann T.
        • Vogg M.C.
        • Owlarn S.
        • Boutros M.
        • Bartscherer K.
        The head-regeneration transcriptome of the planarian Schmidtea mediterranea.
        Genome Biol. 2011; 12: R76https://doi.org/10.1186/gb-2011-12-8-r76
        • Hirst R.A.
        • Rutman A.
        • Williams G.
        • O’Callaghan C.
        Ciliated air-liquid cultures as an aid to diagnostic testing of primary ciliary dyskinesia.
        Chest. 2010; 138: 1441-1447https://doi.org/10.1378/chest.10-0175
        • Höben I.M.
        • Hjeij R.
        • Olbrich H.
        • et al.
        Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms.
        Am J Hum Genet. 2018; 102: 973-984https://doi.org/10.1016/j.ajhg.2018.03.025
        • Olbrich H.
        • Cremers C.
        • Loges N.T.
        • et al.
        Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex.
        Am J Hum Genet. 2015; 97: 546-554https://doi.org/10.1016/j.ajhg.2015.08.012
        • Sobreira N.
        • Schiettecatte F.
        • Valle D.
        • Hamosh A.
        GeneMatcher: A matching tool for connecting investigators with an interest in the same gene.
        Hum Mutat. 2015; 36: 928-930https://doi.org/10.1002/humu.22844
        • Lucas J.S.
        • Barbato A.
        • Collins S.A.
        • et al.
        European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia.
        Eur Respir J. 2017; 491601090https://doi.org/10.1183/13993003.01090-2016
      3. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 2007;8(11):880-893. Published correction appears in Nat Rev Mol Cell Biol. 2008;9(1):88. http://doi.org/10.1038/nrm2278

        • Lin J.
        • Yin W.
        • Smith M.C.
        • et al.
        Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia.
        Nat Commun. 2014; 5: 5727https://doi.org/10.1038/ncomms6727
        • Casey D.M.
        • Inaba K.
        • Pazour G.J.
        • et al.
        DC3, the 21-kDa subunit of the outer dynein arm-docking complex (ODA-DC), is a novel EF-hand protein important for assembly of both the outer arm and the ODA-DC.
        Mol Biol Cell. 2003; 14: 3650-3663https://doi.org/10.1091/mbc.E03-01-0057
        • Rigden D.J.
        • Galperin M.Y.
        The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution.
        J Mol Biol. 2004; 343: 971-984https://doi.org/10.1016/j.jmb.2004.08.077