Advertisement
Systematic Review| Volume 25, ISSUE 3, 100354, March 2023

Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review

Published:December 06, 2022DOI:https://doi.org/10.1016/j.gim.2022.11.021

      Abstract

      Purpose

      Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications.

      Methods

      We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity.

      Results

      In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants.

      Conclusion

      Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      ACMG Member Login

      Are you an ACMG Member? Sign in for online access.

      Subscribe:

      Subscribe to Genetics in Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bertuch A.A.
        The molecular genetics of the telomere biology disorders.
        RNA Biol. 2016; 13: 696-706https://doi.org/10.1080/15476286.2015.1094596
        • Shay J.W.
        • Wright W.E.
        Telomeres and telomerase: three decades of progress.
        Nat Rev Genet. 2019; 20: 299-309https://doi.org/10.1038/s41576-019-0099-1
        • Savage S.A.
        Beginning at the ends: telomeres and human disease.
        F1000Res. 2018; 28: 524https://doi.org/10.12688/f1000research.14068.1
        • Swerdlow S.H.
        • Campo E.
        • Pileri S.A.
        • et al.
        The 2016 revision of the World Health Organization classification of lymphoid neoplasms.
        Blood. 2016; 127: 2375-2390https://doi.org/10.1182/blood-2016-01-643569
        • Gable D.L.
        • Gaysinskaya V.
        • Atik C.C.
        • et al.
        ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation.
        Genes Dev. 2019; 33: 1381-1396https://doi.org/10.1101/gad.326785.119
        • Newton C.A.
        • Batra K.
        • Torrealba J.
        • et al.
        Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive.
        Eur Respir J. 2016; 48: 1710-1720https://doi.org/10.1183/13993003.00308-2016
        • Hoffman H.
        • Rice C.
        • Skordalakes E.
        Structural analysis reveals the deleterious effects of telomerase mutations in bone marrow failure syndromes.
        J Biol Chem. 2017; 292: 4593-4601https://doi.org/10.1074/jbc.M116.771204
        • Kapuria D.
        • Ben-Yakov G.
        • Ortolano R.
        • et al.
        The spectrum of hepatic involvement in patients with telomere disease.
        Hepatology. 2019; 69: 2579-2585https://doi.org/10.1002/hep.30578
        • Feurstein S.
        • Adegunsoye A.
        • Mojsilovic D.
        • et al.
        Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations.
        Blood Adv. 2020; 4: 4873-4886https://doi.org/10.1182/bloodadvances.2020001721
        • Newton C.A.
        • Zhang D.
        • Oldham J.M.
        • et al.
        Telomere length and use of immunosuppressive medications in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2019; 200: 336-347https://doi.org/10.1164/rccm.201809-1646OC
        • Mackintosh J.A.
        • Pietsch M.
        • Lutzky V.
        • et al.
        TELO-SCOPE study: a randomised, double-blind, placebo-controlled, phase 2 trial of danazol for short telomere related pulmonary fibrosis.
        BMJ Open Respir Res. 2021; 8: e001127https://doi.org/10.1136/bmjresp-2021-001127
        • Vulliamy T.
        • Marrone A.
        • Szydlo R.
        • Walne A.
        • Mason P.J.
        • Dokal I.
        Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC.
        Nat Genet. 2004; 36: 447-449https://doi.org/10.1038/ng1346
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424https://doi.org/10.1038/gim.2015.30
        • Brnich S.E.
        • Rivera-Muñoz E.A.
        • Berg J.S.
        Quantifying the potential of functional evidence to reclassify variants of uncertain significance in the categorical and Bayesian interpretation frameworks.
        Hum Mutat. 2018; 39: 1531-1541https://doi.org/10.1002/humu.23609
        • Brnich S.E.
        • Abou Tayoun A.N.
        • Couch F.J.
        • et al.
        Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework.
        Genome Med. 2019; 12: 3
        • Thaxton C.
        • Good M.E.
        • DiStefano M.T.
        • et al.
        Utilizing ClinGen gene-disease validity and dosage sensitivity curations to inform variant classification.
        Hum Mutat. 2022; 43: 1031-1040https://doi.org/10.1002/humu.24291
        • Martin A.R.
        • Williams E.
        • Foulger R.E.
        • et al.
        PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels.
        Nat Genet. 2019; 51: 1560-1565https://doi.org/10.1038/s41588-019-0528-2
        • Chunn L.M.
        • Nefcy D.C.
        • Scouten R.W.
        • et al.
        Mastermind: a comprehensive genomic association search engine for empirical evidence curation and genetic variant interpretation.
        Front Genet. 2020; 11: 577152https://doi.org/10.3389/fgene.2020.577152
        • Ochoa D.
        • Hercules A.
        • Carmona M.
        • et al.
        Open Targets Platform: supporting systematic drug-target identification and prioritisation.
        Nucleic Acids Res. 2021; 49: D1302-D1310https://doi.org/10.1093/nar/gkaa1027
        • Kopanos C.
        • Tsiolkas V.
        • Kouris A.
        • et al.
        VarSome: the human genomic variant search engine.
        Bioinformatics. 2019; 35: 1978-1980https://doi.org/10.1093/bioinformatics/bty897
        • Consortium UniProt
        UniProt: the universal protein knowledgebase in 2021.
        Nucleic Acids Res. 2021; 49: D480-D489https://doi.org/10.1093/nar/gkaa1100
        • Landrum M.J.
        • Lee J.M.
        • Benson M.
        • et al.
        ClinVar: improving access to variant interpretations and supporting evidence.
        Nucleic Acids Res. 2018; 46: D1062-D1067https://doi.org/10.1093/nar/gkx1153
        • Abou Tayoun A.N.
        • Pesaran T.
        • DiStefano M.T.
        • et al.
        Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion.
        Hum Mutat. 2018; 39: 1517-1524
        • Feurstein S.
        • Hahn C.N.
        • Mehta N.
        • Godley L.A.
        A practical guide to interpreting germline variants that drive hematopoietic malignancies, bone marrow failure, and chronic cytopenias.
        Genet Med. 2022; 24: 931-954https://doi.org/10.1016/j.gim.2021.12.008
        • Luo X.
        • Feurstein S.
        • Mohan S.
        • et al.
        ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants.
        Blood Adv. 2019; 3: 2962-2979
        • Hayeck T.J.
        • Stong N.
        • Wolock C.J.
        • et al.
        Improved pathogenic variant localization via a hierarchical model of sub-regional intolerance.
        Am J Hum Genet. 2019; 104: 299-309
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Ioannidis N.M.
        • Rothstein J.H.
        • Pejaver V.
        • et al.
        REVEL: an ensemble method for predicting the pathogenicity of rare missense variants.
        Am J Hum Genet. 2016; 99: 877-885https://doi.org/10.1016/j.ajhg.2016.08.016
        • Jaganathan K.
        • Kyriazopoulou Panagiotopoulou S.
        • McRae J.F.
        • et al.
        Predicting splicing from primary sequence with deep learning.
        Cell. 2019; 176: 535-548.e24
      1. Richards CS, Bale S, Bellissimo DB, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med 2008;10(4):294-300.

        • Whiffin N.
        • Minikel E.
        • Walsh R.
        • et al.
        Using high-resolution variant frequencies to empower clinical genome interpretation.
        Genet Med. 2017; 19: 1151-1158
        • Tavtigian S.V.
        • Greenblatt M.S.
        • Harrison S.M.
        • et al.
        Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework.
        Genet Med. 2018; 20: 1054-1060https://doi.org/10.1038/gim.2017.210
        • Zhou X.
        • Edmonson M.N.
        • Wilkinson M.R.
        • et al.
        Exploring genomic alteration in pediatric cancer using ProteinPaint.
        Nat Genet. 2016; 48: 4-6https://doi.org/10.1038/ng.3466
        • Greider C.W.
        • Blackburn E.H.
        Identification of a specific telomere terminal transferase activity in Tetrahymena extracts.
        Cell. 1985; 43: 405-413https://doi.org/10.1016/0092-8674(85)90170-9
        • Kolquist K.A.
        • Ellisen L.W.
        • Counter C.M.
        • et al.
        Expression of TERT in early premalignant lesions and a subset of cells in normal tissues.
        Nat Genet. 1998; 19: 182-186https://doi.org/10.1038/554
        • Hiyama K.
        • Hirai Y.
        • Kyoizumi S.
        • et al.
        Activation of telomerase in human lymphocytes and hematopoietic progenitor cells.
        J Immunol. 1995; 155: 3711-3715
        • Nakamura T.M.
        • Morin G.B.
        • Chapman K.B.
        • et al.
        Telomerase catalytic subunit homologs from fission yeast and human.
        Science. 1997; 277: 955-959https://doi.org/10.1126/science.277.5328.955
        • Bodnar A.G.
        • Ouellette M.
        • Frolkis M.
        • et al.
        Extension of life-span by introduction of telomerase into normal human cells.
        Science. 1998; 279: 349-352https://doi.org/10.1126/science.279.5349.349
        • Schmidt J.C.
        • Dalby A.B.
        • Cech T.R.
        Identification of human TERT elements necessary for telomerase recruitment to telomeres.
        Elife. 2014; 3e03563
        • Tsang A.R.
        • Wyatt H.D.M.
        • Ting N.S.Y.
        • Beattie T.L.
        hTERT mutations associated with idiopathic pulmonary fibrosis affect telomerase activity, telomere length, and cell growth by distinct mechanisms.
        Aging Cell. 2012; 11: 482-490https://doi.org/10.1111/j.1474-9726.2012.00810.x
        • Zhong F.L.
        • Batista L.F.Z.
        • Freund A.
        • Pech M.F.
        • Venteicher A.S.
        • Artandi S.E.
        TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends.
        Cell. 2012; 150: 481-494https://doi.org/10.1016/j.cell.2012.07.012
        • Tsakiri K.D.
        • Cronkhite J.T.
        • Kuan P.J.
        • et al.
        Adult-onset pulmonary fibrosis caused by mutations in telomerase.
        Proc Natl Acad Sci U S A. 2007; 104: 7552-7557
        • Zaug A.J.
        • Crary S.M.
        • Jesse Fioravanti M.
        • Campbell K.
        • Cech T.R.
        Many disease-associated variants of hTERT retain high telomerase enzymatic activity.
        Nucleic Acids Res. 2013; 41: 8969-8978
        • Zhang Y.
        • Calado R.
        • Rao M.
        • et al.
        Telomerase variant A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal carcinomas.
        PLoS One. 2014; 9e101010
        • Xu J.
        • de Oliveira D.M.
        • Trudeau M.A.
        • et al.
        Mild catalytic defects of tert rs61748181 polymorphism affect the clinical presentation of chronic obstructive pulmonary disease.
        Sci Rep. 2021; 11: 4333
        • Reilly C.R.
        • Myllymaki M.
        • Redd R.
        • et al.
        The clinical and functional effects of TERT variants in myelodysplastic syndrome.
        Blood. 2021; 138: 898-911
        • Du H.Y.
        • Pumbo E.
        • Ivanovich J.
        • et al.
        TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements.
        Blood. 2009; 113: 309-316
        • Xin Z.T.
        • Beauchamp A.D.
        • Calado R.T.
        • et al.
        Functional characterization of natural telomerase mutations found in patients with hematologic disorders.
        Blood. 2007; 109: 524-532
        • Terada K.
        • Miyake K.
        • Yamaguchi H.
        • et al.
        TERT and TERC mutations detected in cryptic dyskeratosis congenita suppress telomerase activity.
        Int J Lab Hematol. 2020; 42: 316-321
        • Hartmann D.
        • Srivastava U.
        • Thaler M.
        • et al.
        Telomerase gene mutations are associated with cirrhosis formation.
        Hepatology. 2011; 53: 1608-1617
        • Calado R.T.
        • Regal J.A.
        • Hills M.
        • et al.
        Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia.
        Proc Natl Acad Sci U S A. 2009; 106: 1187-1192
        • Yamaguchi H.
        • Calado R.T.
        • Ly H.
        • et al.
        Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia.
        N Engl J Med. 2005; 352: 1413-1424
        • Kirwan M.
        • Vulliamy T.
        • Marrone A.
        • et al.
        Defining the pathogenic role of telomerase mutations in myelodysplastic syndrome and acute myeloid leukemia.
        Hum Mutat. 2009; 30: 1567-1573
        • Alder J.K.
        • Chen J.J.
        • Lancaster L.
        • et al.
        Short telomeres are a risk factor for idiopathic pulmonary fibrosis.
        Proc Natl Acad Sci U S A. 2008; 105: 13051-13056
        • Tomlinson C.G.
        • Sasa G.
        • Aubert G.
        • et al.
        Clinical and functional characterization of telomerase variants in patients with pediatric acute myeloid leukemia/myelodysplastic syndrome.
        Leukemia. 2021; 35: 269-273
        • Gramatges M.M.
        • Qi X.
        • Sasa G.S.
        • Chen J.J.
        • Bertuch A.A.
        A homozygous telomerase T-motif variant resulting in markedly reduced repeat addition processivity in siblings with Hoyeraal Hreidarsson syndrome.
        Blood. 2013; 121: 3586-3593
        • Collopy L.C.
        • Walne A.J.
        • Cardoso S.
        • et al.
        Triallelic and epigenetic-like inheritance in human disorders of telomerase.
        Blood. 2015; 126: 176-184
        • Basel-Vanagaite L.
        • Dokal I.
        • Tamary H.
        • et al.
        Expanding the clinical phenotype of autosomal dominant dyskeratosis congenita caused by TERT mutations.
        Haematologica. 2008; 93: 943-944
        • Diaz de Leon A.
        • Cronkhite J.T.
        • Katzenstein A.L.A.
        • et al.
        Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations.
        PLoS One. 2010; 5: e10680https://doi.org/10.1371/journal.pone.0010680
        • Snetselaar R.
        • van Batenburg A.A.
        • van Oosterhout M.F.M.
        • et al.
        Short telomere length in IPF lung associates with fibrotic lesions and predicts survival.
        PLoS One. 2017; 12e0189467
        • Justet A.
        • Thabut G.
        • Manali E.
        • et al.
        Safety and efficacy of pirfenidone in patients carrying telomerase complex mutation.
        Eur Respir J. 2018; 51: 1701875
        • Xie M.
        • Podlevsky J.D.
        • Qi X.
        • Bley C.J.
        • Chen J.J.
        A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity.
        Nucleic Acids Res. 2010; 38: 1982-1996
        • Cronkhite J.T.
        • Xing C.
        • Raghu G.
        • et al.
        Telomere shortening in familial and sporadic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2008; 178: 729-737
        • Robart A.R.
        • Collins K.
        Investigation of human telomerase holoenzyme assembly, activity, and processivity using disease-linked subunit variants.
        J Biol Chem. 2010; 285: 4375-4386
        • Gutierrez-Rodrigues F.
        • Santana-Lemos B.A.
        • Scheucher P.S.
        • Alves-Paiva R.M.
        • Calado R.T.
        Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans.
        PLoS One. 2014; 9e113747
        • Tomlinson C.G.
        • Moye A.L.
        • Holien J.K.
        • Parker M.W.
        • Cohen S.B.
        • Bryan T.M.
        Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding.
        Biochem J. 2015; 465: 347-357
        • Vogiatzi P.
        • Perdigones N.
        • Mason P.J.
        • Wilson D.B.
        • Bessler M.
        A family with Hoyeraal-Hreidarsson syndrome and four variants in two genes of the telomerase core complex.
        Pediatr Blood Cancer. 2013; 60: E4-E6
        • Borie R.
        • Tabeze L.
        • Thabut G.
        • et al.
        Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis.
        Eur Respir J. 2016; 48: 1721-1731
        • Armanios M.
        • Chen J.L.
        • Chang Y.P.
        • et al.
        Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita.
        Proc Natl Acad Sci U S A. 2005; 102: 15960-15964
        • Batista L.F.
        • Pech M.F.
        • Zhong F.L.
        • et al.
        Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells.
        Nature. 2011; 474: 399-402
        • Gutierrez-Rodrigues F.
        • Donaires F.S.
        • Pinto A.
        • et al.
        Pathogenic TERT promoter variants in telomere diseases.
        Genet Med. 2019; 21: 1594-1602
        • Parry E.M.
        • Alder J.K.
        • Qi X.
        • Chen J.J.
        • Armanios M.
        Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase.
        Blood. 2011; 117: 5607-56011
        • Bryan C.
        • Rice C.
        • Hoffman H.
        • Harkisheimer M.
        • Sweeney M.
        • Skordalakes E.
        Structural Basis of Telomerase Inhibition by the Highly Specific BIBR1532.
        Structure. 2015; 23: 1934-1942
        • Vulliamy T.J.
        • Kirwan M.J.
        • Beswick R.
        • et al.
        Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations.
        PLoS One. 2011; 6e24383
        • Morin G.B.
        The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats.
        Cell. 1989; 59: 521-529https://doi.org/10.1016/0092-8674(89)90035-4
        • Kim N.W.
        • Piatyszek M.A.
        • Prowse K.R.
        • et al.
        Specific association of human telomerase activity with immortal cells and cancer.
        Science. 1994; 266: 2011-2015https://doi.org/10.1126/science.7605428
        • d’Adda di Fagagna F.
        • Reaper P.M.
        • Clay-Farrace L.
        • et al.
        A DNA damage checkpoint response in telomere-initiated senescence.
        Nature. 2003; 426: 194-198https://doi.org/10.1038/nature02118
        • Dimri G.P.
        • Lee X.
        • Basile G.
        • et al.
        A biomarker that identifies senescent human cells in culture and in aging skin in vivo.
        Proc Natl Acad Sci U S A. 1995; 92: 9363-9367https://doi.org/10.1073/pnas.92.20.9363
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581 (Published correction appears in Nature. 2021;590(7846):E53. Published correction appears in Nature. 2021;597(7874):E3-E4.): 434-443
        • Nagpal N.
        • Agarwal S.
        Telomerase RNA processing: implications for human health and disease.
        Stem Cells. 2020; 38: 1532-1543https://doi.org/10.1002/stem.3270
        • Feng J.
        • Funk W.D.
        • Wang S.S.
        • et al.
        The RNA component of human telomerase.
        Science. 1995; 269: 1236-1241https://doi.org/10.1126/science.7544491
        • Agarwal S.
        • Loh Y.H.
        • McLoughlin E.M.
        • et al.
        Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients.
        Nature. 2010; 464: 292-296https://doi.org/10.1038/nature08792
        • Mitchell J.R.
        • Collins K.
        Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase.
        Mol Cell. 2000; 6: 361-371https://doi.org/10.1016/s1097-2765(00)00036-8
        • Chen J.L.
        • Opperman K.K.
        • Greider C.W.
        A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA.
        Nucleic Acids Res. 2002; 30: 592-597https://doi.org/10.1093/nar/30.2.592
        • Moriarty T.J.
        • Marie-Egyptienne D.T.
        • Autexier C.
        Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer.
        Mol Cell Biol. 2004; 24: 3720-3733https://doi.org/10.1128/MCB.24.9.3720-3733.2004
        • Mitchell J.R.
        • Wood E.
        • Collins K.
        A telomerase component is defective in the human disease dyskeratosis congenita.
        Nature. 1999; 402: 551-555https://doi.org/10.1038/990141
        • Errington T.M.
        • Fu D.
        • Wong J.M.Y.
        • Collins K.
        Disease-associated human telomerase RNA variants show loss of function for telomere synthesis without dominant-negative interference.
        Mol Cell Biol. 2008; 28: 6510-6520https://doi.org/10.1128/MCB.00777-08
        • Egan E.D.
        • Collins K.
        An enhanced H/ACA RNP assembly mechanism for human telomerase RNA.
        Mol Cell Biol. 2012; 32: 2428-2439https://doi.org/10.1128/MCB.00286-12
        • Stern J.L.
        • Zyner K.G.
        • Pickett H.A.
        • Cohen S.B.
        • Bryan T.M.
        Telomerase recruitment requires both TCAB1 and Cajal bodies independently.
        Mol Cell Biol. 2012; 32: 2384-2395https://doi.org/10.1128/MCB.00379-12
        • Chen L.
        • Roake C.M.
        • Freund A.
        • et al.
        An activity switch in human telomerase based on RNA conformation and shaped by TCAB1.
        Cell. 2018; 174: 218-230.e13https://doi.org/10.1016/j.cell.2018.04.039
        • Cristofari G.
        • Adolf E.
        • Reichenbach P.
        • et al.
        Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation.
        Mol Cell. 2007; 27: 882-889https://doi.org/10.1016/j.molcel.2007.07.020
        • de Lange T.
        Shelterin: the protein complex that shapes and safeguards human telomeres.
        Genes Dev. 2005; 19: 2100-2110https://doi.org/10.1101/gad.1346005
        • Takai H.
        • Smogorzewska A.
        • de Lange T.
        DNA damage foci at dysfunctional telomeres.
        Curr Biol. 2003; 13: 1549-1556https://doi.org/10.1016/s0960-9822(03)00542-6
        • Konishi A.
        • de Lange T.
        Cell cycle control of telomere protection and NHEJ revealed by a ts mutation in the DNA-binding domain of TRF2.
        Genes Dev. 2008; 22: 1221-1230https://doi.org/10.1101/gad.1634008
        • Denchi E.L.
        • de Lange T.
        Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1.
        Nature. 2007; 448: 1068-1071https://doi.org/10.1038/nature06065
        • Frescas D.
        • de Lange T.
        TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1.
        Mol Cell Biol. 2014; 34: 1349-1362https://doi.org/10.1128/MCB.01052-13
        • Grill S.
        • Padmanaban S.
        • Friedman A.
        • et al.
        TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis.
        JCI Insight. 2021; 6: e138059https://doi.org/10.1172/jci.insight.138059
        • Kocak H.
        • Ballew B.J.
        • Bisht K.
        • et al.
        Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1.
        Genes Dev. 2014; 28: 2090-2102https://doi.org/10.1101/gad.248567.114
        • Pike A.M.
        • Strong M.A.
        • Ouyang J.P.T.
        • Greider C.W.
        TIN2 functions with TPP1/POT1 to stimulate telomerase processivity.
        Mol Cell Biol. 2019; 39 (e00593-18.)
        • Liu D.
        • Safari A.
        • O’Connor M.S.
        • et al.
        PTOP interacts with POT1 and regulates its localization to telomeres.
        Nat Cell Biol. 2004; 6: 673-680https://doi.org/10.1038/ncb1142
        • Wang F.
        • Podell E.R.
        • Zaug A.J.
        • et al.
        The POT1-TPP1 telomere complex is a telomerase processivity factor.
        Nature. 2007; 445: 506-510https://doi.org/10.1038/nature05454
        • Nandakumar J.
        • Bell C.F.
        • Weidenfeld I.
        • Zaug A.J.
        • Leinwand L.A.
        • Cech T.R.
        The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity.
        Nature. 2012; 492: 285-289https://doi.org/10.1038/nature11648
        • Abreu E.
        • Aritonovska E.
        • Reichenbach P.
        • et al.
        TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo.
        Mol Cell Biol. 2010; 30: 2971-2982https://doi.org/10.1128/MCB.00240-10
        • Li J.
        • Chang J.
        • Tian J.
        • et al.
        A rare variant P507L in TPP1 interrupts TPP1-TIN2 interaction, influences telomere length, and confers colorectal cancer risk in Chinese population.
        Cancer Epidemiol Biomarkers Prev. 2018; 27: 1029-1035https://doi.org/10.1158/1055-9965.EPI-18-0099
        • Bisht K.
        • Smith E.M.
        • Tesmer V.M.
        • Nandakumar J.
        Structural and functional consequences of a disease mutation in the telomere protein TPP1.
        Proc Natl Acad Sci U S A. 2016; 113: 13021-13026https://doi.org/10.1073/pnas.1605685113
        • Henslee G.
        • Williams C.L.
        • Liu P.
        • Bertuch A.A.
        Identification and characterization of novel ACD variants: modulation of TPP1 protein level offsets the impact of germline loss-of-function variants on telomere length.
        Cold Spring Harb Mol Case Stud. 2021; 7a005454https://doi.org/10.1101/mcs.a005454
        • Guo Y.
        • Kartawinata M.
        • Li J.
        • et al.
        Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1.
        Blood. 2014; 124: 2767-2774https://doi.org/10.1182/blood-2014-08-596445
        • Wang F.
        • Stewart J.A.
        • Kasbek C.
        • Zhao Y.
        • Wright W.E.
        • Price C.M.
        Human CST has independent functions during telomere duplex replication and C-strand fill-in.
        Cell Rep. 2012; 2: 1096-1103https://doi.org/10.1016/j.celrep.2012.10.007
        • Huang C.
        • Dai X.
        • Chai W.
        Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in.
        Cell Res. 2012; 22: 1681-1695https://doi.org/10.1038/cr.2012.132
        • Stewart J.A.
        • Wang F.
        • Chaiken M.F.
        • et al.
        Human CST promotes telomere duplex replication and general replication restart after fork stalling.
        EMBO J. 2012; 31: 3537-3549https://doi.org/10.1038/emboj.2012.215
        • Wu P.
        • Takai H.
        • de Lange T.
        Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST.
        Cell. 2012; 150: 39-52https://doi.org/10.1016/j.cell.2012.05.026
        • Gu P.
        • Min J.N.
        • Wang Y.
        • et al.
        CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion.
        EMBO J. 2012; 31: 2309-2321https://doi.org/10.1038/emboj.2012.96
        • Polvi A.
        • Linnankivi T.
        • Kivelä T.
        • et al.
        Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts.
        Am J Hum Genet. 2012; 90: 540-549https://doi.org/10.1016/j.ajhg.2012.02.002
        • Gu P.
        • Chang S.
        Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus.
        Aging Cell. 2013; 12: 1100-1109https://doi.org/10.1111/acel.12139
        • Wang Y.
        • Chai W.
        Pathogenic CTC1 mutations cause global genome instabilities under replication stress.
        Nucleic Acids Res. 2018; 46: 3981-3992https://doi.org/10.1093/nar/gky114
        • Chen L.Y.
        • Majerská J.
        • Lingner J.
        Molecular basis of telomere syndrome caused by CTC1 mutations.
        Genes Dev. 2013; 27: 2099-2108https://doi.org/10.1101/gad.222893.113
        • Gu P.
        • Jia S.
        • Takasugi T.
        • et al.
        CTC1-STN1 coordinates G- and C-strand synthesis to regulate telomere length.
        Aging Cell. 2018; 17: e12783https://doi.org/10.1111/acel.12783
        • Simon A.J.
        • Lev A.
        • Zhang Y.
        • et al.
        Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects.
        J Exp Med. 2016; 213: 1429-1440https://doi.org/10.1084/jem.20151618
        • Cohen S.B.
        • Graham M.E.
        • Lovrecz G.O.
        • Bache N.
        • Robinson P.J.
        • Reddel R.R.
        Protein composition of catalytically active human telomerase from immortal cells.
        Science. 2007; 315: 1850-1853https://doi.org/10.1126/science.1138596
        • Fu D.
        • Collins K.
        Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation.
        Mol Cell. 2007; 28: 773-785https://doi.org/10.1016/j.molcel.2007.09.023
        • Darzacq X.
        • Kittur N.
        • Roy S.
        • Shav-Tal Y.
        • Singer R.H.
        • Meier U.T.
        Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells.
        J Cell Biol. 2006; 173: 207-218https://doi.org/10.1083/jcb.200601105
        • Brault M.E.
        • Lauzon C.
        • Autexier C.
        Dyskeratosis congenita mutations in dyskerin SUMOylation consensus sites lead to impaired telomerase RNA accumulation and telomere defects.
        Hum Mol Genet. 2013; 22 (Published correction appears in Hum Mol Genet. 2014;23(1):279-280.): 3498-3507
        • MacNeil D.E.
        • Lambert-Lanteigne P.
        • Autexier C.
        N-terminal residues of human dyskerin are required for interactions with telomerase RNA that prevent RNA degradation.
        Nucleic Acids Res. 2019; 47: 5368-5380https://doi.org/10.1093/nar/gkz233
        • Ashbridge B.
        • Orte A.
        • Yeoman J.A.
        • et al.
        Single-molecule analysis of the human telomerase RNA.dyskerin interaction and the effect of dyskeratosis congenita mutations.
        Biochemistry. 2009; 48: 10858-10865https://doi.org/10.1021/bi901373e
        • Shukla S.
        • Schmidt J.C.
        • Goldfarb K.C.
        • Cech T.R.
        • Parker R.
        Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects.
        Nat Struct Mol Biol. 2016; 23: 286-292https://doi.org/10.1038/nsmb.3184
        • Wong J.M.Y.
        • Collins K.
        Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita.
        Genes Dev. 2006; 20: 2848-2858https://doi.org/10.1101/gad.1476206
        • Zeng X.L.
        • Thumati N.R.
        • Fleisig H.B.
        • et al.
        The accumulation and not the specific activity of telomerase ribonucleoprotein determines telomere maintenance deficiency in X-linked dyskeratosis congenita.
        Hum Mol Genet. 2012; 21: 721-729https://doi.org/10.1093/hmg/ddr504
        • Mochizuki Y.
        • He J.
        • Kulkarni S.
        • Bessler M.
        • Mason P.J.
        Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing.
        Proc Natl Acad Sci U S A. 2004; 101: 10756-10761https://doi.org/10.1073/pnas.0402560101
        • Zhang Y.
        • Morimoto K.
        • Danilova N.
        • Zhang B.
        • Lin S.
        Zebrafish models for dyskeratosis congenita reveal critical roles of p53 activation contributing to hematopoietic defects through RNA processing.
        PLoS One. 2012; 7: e30188https://doi.org/10.1371/journal.pone.0030188
        • Balogh E.
        • Chandler J.C.
        • Varga M.
        • et al.
        Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis.
        Proc Natl Acad Sci U S A. 2020; 117: 15137-15147https://doi.org/10.1073/pnas.2002328117
        • He J.
        • Gu B.W.
        • Ge J.
        • Mochizuki Y.
        • Bessler M.
        • Mason P.J.
        Variable expression of Dkc1 mutations in mice.
        Genesis. 2009; 47: 366-373https://doi.org/10.1002/dvg.20509
        • Gu B.W.
        • Fan J.M.
        • Bessler M.
        • Mason P.J.
        Accelerated hematopoietic stem cell aging in a mouse model of dyskeratosis congenita responds to antioxidant treatment.
        Aging Cell. 2011; 10: 338-348https://doi.org/10.1111/j.1474-9726.2011.00674.x
        • Vulliamy T.J.
        • Knight S.W.
        • Heiss N.S.
        • et al.
        Dyskeratosis congenita caused by a 3′ deletion: germline and somatic mosaicism in a female carrier.
        Blood. 1999; 94: 1254-1260
        • Schwartz S.
        • Bernstein D.A.
        • Mumbach M.R.
        • et al.
        Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA.
        Cell. 2014; 159: 148-162https://doi.org/10.1016/j.cell.2014.08.028
        • Bellodi C.
        • McMahon M.
        • Contreras A.
        • et al.
        H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation.
        Cell Rep. 2013; 3: 1493-1502https://doi.org/10.1016/j.celrep.2013.04.030
        • Walne A.J.
        • Vulliamy T.
        • Marrone A.
        • et al.
        Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10.
        Hum Mol Genet. 2007; 16: 1619-1629
        • Stanley S.E.
        • Gable D.L.
        • Wagner C.L.
        • et al.
        Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema.
        Sci Transl Med. 2016; 8: 351ra107https://doi.org/10.1126/scitranslmed.aaf7837
        • Trahan C.
        • Martel C.
        • Dragon F.
        Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs.
        Hum Mol Genet. 2010; 19: 825-836https://doi.org/10.1093/hmg/ddp551
        • Moon D.H.
        • Segal M.
        • Boyraz B.
        • et al.
        Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component.
        Nat Genet. 2015; 47: 1482-1488https://doi.org/10.1038/ng.3423
        • Berndt H.
        • Harnisch C.
        • Rammelt C.
        • et al.
        Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming.
        RNA. 2012; 18 (Published correction appears in RNA. 2014;20(8):1349.): 958-972
        • Tummala H.
        • Walne A.
        • Collopy L.
        • et al.
        Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita.
        J Clin Invest. 2015; 125: 2151-2160https://doi.org/10.1172/JCI78963
        • Dejene E.A.
        • Li Y.
        • Showkatian Z.
        • Ling H.
        • Seto E.
        Regulation of poly(A)-specific ribonuclease activity by reversible lysine acetylation.
        J Biol Chem. 2020; 295: 10255-10270https://doi.org/10.1074/jbc.RA120.012552
        • Grill S.
        • Nandakumar J.
        Molecular mechanisms of telomere biology disorders.
        J Biol Chem. 2021; 296: 100064https://doi.org/10.1074/jbc.REV120.014017
        • Awad A.
        • Glousker G.
        • Lamm N.
        • et al.
        Full length RTEL1 is required for the elongation of the single-stranded telomeric overhang by telomerase.
        Nucleic Acids Res. 2020; 48: 7239-7251https://doi.org/10.1093/nar/gkaa503
        • Greider C.W.
        Telomeres do D-loop-T-loop.
        Cell. 1999; 97: 419-422https://doi.org/10.1016/s0092-8674(00)80750-3
        • Marsh J.C.W.
        • Gutierrez-Rodrigues F.
        • Cooper J.
        • et al.
        Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms.
        Blood Adv. 2018; 2: 36-48https://doi.org/10.1182/bloodadvances.2017008110
        • Lamm N.
        • Ordan E.
        • Shponkin R.
        • Richler C.
        • Aker M.
        • Tzfati Y.
        Diminished telomeric 3′ overhangs are associated with telomere dysfunction in Hoyeraal-Hreidarsson syndrome.
        PLoS One. 2009; 4: e5666https://doi.org/10.1371/journal.pone.0005666
        • Deng Z.
        • Glousker G.
        • Molczan A.
        • et al.
        Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome.
        Proc Natl Acad Sci U S A. 2013; 110: E3408-E3416https://doi.org/10.1073/pnas.1300600110
        • Barber L.J.
        • Youds J.L.
        • Ward J.D.
        • et al.
        RTEL1 maintains genomic stability by suppressing homologous recombination.
        Cell. 2008; 135: 261-271https://doi.org/10.1016/j.cell.2008.08.016
        • Walne A.J.
        • Vulliamy T.
        • Kirwan M.
        • Plagnol V.
        • Dokal I.
        Constitutional mutations in RTEL1 cause severe dyskeratosis congenita.
        Am J Hum Genet. 2013; 92: 448-453https://doi.org/10.1016/j.ajhg.2013.02.001
        • Sarek G.
        • Vannier J.B.
        • Panier S.
        • Petrini J.H.J.
        • Boulton S.J.
        TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding.
        Mol Cell. 2015; 57 (Published correction appears in Mol Cell. 2016;61(5):788-9.): 622-635
        • Speckmann C.
        • Sahoo S.S.
        • Rizzi M.
        • et al.
        Clinical and molecular heterogeneity of RTEL1 deficiency.
        Front Immunol. 2017; 8 (Published correction appears in Front Immunol. 2017;8:1250.): 449
        • Ye J.Z.S.
        • Donigian J.R.
        • van Overbeek M.
        • et al.
        TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres.
        J Biol Chem. 2004; 279: 47264-47271https://doi.org/10.1074/jbc.M409047200
        • Ye J.Z.Y.
        • de Lange T.
        TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex.
        Nat Genet. 2004; 36: 618-623https://doi.org/10.1038/ng1360
        • Takai K.K.
        • Kibe T.
        • Donigian J.R.
        • Frescas D.
        • de Lange T.
        Telomere protection by TPP1/POT1 requires tethering to TIN2.
        Mol Cell. 2011; 44 (Published correction appears in Mol Cell. 2017;67(1):162.): 647-659
        • Podlevsky J.D.
        • Bley C.J.
        • Omana R.V.
        • Qi X.
        • Chen J.J.L.
        The telomerase database.
        Nucleic Acids Res. 2008; 36: D339-D343https://doi.org/10.1093/nar/gkm700
        • Frank A.K.
        • Tran D.C.
        • Qu R.W.
        • Stohr B.A.
        • Segal D.J.
        • Xu L.
        The shelterin TIN2 subunit mediates recruitment of telomerase to telomeres.
        PLoS Genet. 2015; 11: e1005410https://doi.org/10.1371/journal.pgen.1005410
        • Sasa G.S.
        • Ribes-Zamora A.
        • Nelson N.D.
        • Bertuch A.A.
        Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood.
        Clin Genet. 2012; 81: 470-478https://doi.org/10.1111/j.1399-0004.2011.01658.x
        • Hu C.
        • Rai R.
        • Huang C.
        • et al.
        Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex.
        Cell Res. 2017; 27: 1485-1502https://doi.org/10.1038/cr.2017.144
        • Xin Z.T.
        • Ly H.
        Characterization of interactions between naturally mutated forms of the TIN2 protein and its known protein partners of the shelterin complex.
        Clin Genet. 2012; 81: 301-302https://doi.org/10.1111/j.1399-0004.2011.01784.x
        • Nelson N.D.
        • Dodson L.M.
        • Escudero L.
        • et al.
        The C-terminal extension unique to the long isoform of the shelterin component TIN2 enhances its interaction with TRF2 in a phosphorylation- and dyskeratosis congenita cluster-dependent fashion.
        Mol Cell Biol. 2018; 38 (e00025-18.)
        • Yang D.
        • He Q.
        • Kim H.
        • Ma W.
        • Songyang Z.
        TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase.
        J Biol Chem. 2011; 286: 23022-23030https://doi.org/10.1074/jbc.M111.225870
        • Canudas S.
        • Houghtaling B.R.
        • Bhanot M.
        • et al.
        A role for heterochromatin protein 1γ at human telomeres.
        Genes Dev. 2011; 25: 1807-1819https://doi.org/10.1101/gad.17325211
        • Venteicher A.S.
        • Abreu E.B.
        • Meng Z.
        • et al.
        A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis.
        Science. 2009; 323: 644-648https://doi.org/10.1126/science.1165357
        • Tycowski K.T.
        • Shu M.D.
        • Kukoyi A.
        • Steitz J.A.
        A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles.
        Mol Cell. 2009; 34: 47-57https://doi.org/10.1016/j.molcel.2009.02.020
        • Vogan J.M.
        • Zhang X.
        • Youmans D.T.
        • et al.
        Minimized human telomerase maintains telomeres and resolves endogenous roles of H/ACA proteins, TCAB1, and Cajal bodies.
        Elife. 2016; 5: e18221https://doi.org/10.7554/eLife.18221
        • Zhong F.
        • Savage S.A.
        • Shkreli M.
        • et al.
        Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita.
        Genes Dev. 2011; 25: 11-16https://doi.org/10.1101/gad.2006411
        • Bergstrand S.
        • Böhm S.
        • Malmgren H.
        • et al.
        Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal-Hreidarsson syndrome.
        Cell Death Dis. 2020; 11: 238https://doi.org/10.1038/s41419-020-2421-4
        • Freund A.
        • Zhong F.L.
        • Venteicher A.S.
        • et al.
        Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1.
        Cell. 2014; 159: 1389-1403https://doi.org/10.1016/j.cell.2014.10.059
        • Henriksson S.
        • Rassoolzadeh H.
        • Hedström E.
        • et al.
        The scaffold protein WRAP53β orchestrates the ubiquitin response critical for DNA double-strand break repair.
        Genes Dev. 2014; 28: 2726-2738https://doi.org/10.1101/gad.246546.114
        • Puno M.R.
        • Lima C.D.
        Structural basis for MTR4-ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex.
        Proc Natl Acad Sci U S A. 2018; 115: E5506-E5515https://doi.org/10.1073/pnas.1803530115
        • Au A.Y.M.
        • Hackl T.
        • Yeager T.R.
        • et al.
        Telomerase activity in pleural malignant mesotheliomas.
        Lung Cancer. 2011; 73: 283-288https://doi.org/10.1016/j.lungcan.2010.12.023
        • Wu Y.Y.
        • Hruszkewycz A.M.
        • Delgado R.M.
        • et al.
        Limitations on the quantitative determination of telomerase activity by the electrophoretic and ELISA based TRAP assays.
        Clin Chim Acta. 2000; 293: 199-212https://doi.org/10.1016/s0009-8981(99)00238-7
        • Fayer S.
        • Horton C.
        • Dines J.N.
        • et al.
        Closing the gap: systematic integration of multiplexed functional data resolves variants of uncertain significance in BRCA1, TP53, and PTEN.
        Am J Hum Genet. 2021; 108: 2248-2258https://doi.org/10.1016/j.ajhg.2021.11.001