Advertisement

Brain monoamine vesicular transport disease caused by homozygous SLC18A2 variants: A study in 42 affected individuals

Published:October 31, 2022DOI:https://doi.org/10.1016/j.gim.2022.09.010

      Abstract

      Purpose

      Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype–phenotype correlations in individuals with biallelic SLC18A2 variants.

      Methods

      A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype–phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies.

      Results

      A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities.

      Conclusion

      These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      ACMG Member Login

      Are you an ACMG Member? Sign in for online access.

      Subscribe:

      Subscribe to Genetics in Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ng J.
        • Papandreou A.
        • Heales S.J.
        • Kurian M.A.
        Monoamine neurotransmitter disorders—clinical advances and future perspectives.
        Nat Rev Neurol. 2015; 11: 567-584https://doi.org/10.1038/nrneurol.2015.172
        • Blackstone C.
        Infantile parkinsonism-dystonia: a dopamine “transportopathy”.
        J Clin Invest. 2009; 119: 1455-1458https://doi.org/10.1172/jci39632
        • Kurian M.A.
        • Gissen P.
        • Smith M.
        • Heales Jr., S.
        • Clayton P.T.
        The monoamine neurotransmitter disorders: an expanding range of neurological syndromes.
        Lancet Neurol. 2011; 10: 721-733https://doi.org/10.1016/S1474-4422(11)70141-7
        • Kurian M.A.
        • Zhen J.
        • Cheng S.Y.
        • et al.
        Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia.
        J Clin Invest. 2009; 119: 1595-1603https://doi.org/10.1172/JCI39060
      1. Kurian MA. SLC6A3-related dopamine transporter deficiency syndrome. In: Adam MP, Mirzaa GM, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 1993-2022.

        • Fon E.A.
        • Pothos E.N.
        • Sun B.C.
        • Killeen N.
        • Sulzer D.
        • Edwards R.H.
        Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action.
        Neuron. 1997; 19: 1271-1283https://doi.org/10.1016/s0896-6273(00)80418-3
        • Rilstone J.J.
        • Alkhater R.A.
        • Minassian B.A.
        Brain dopamine-serotonin vesicular transport disease and its treatment.
        N Engl J Med. 2013; 368: 543-550https://doi.org/10.1056/NEJMoa1207281
        • Takahashi N.
        • Miner L.L.
        • Sora I.
        • et al.
        VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity.
        Proc Natl Acad Sci U S A. 1997; 94: 9938-9943https://doi.org/10.1073/pnas.94.18.9938
        • Jacobsen J.C.
        • Wilson C.
        • Cunningham V.
        • et al.
        Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder.
        J Inherit Metab Dis. 2016; 39: 305-308https://doi.org/10.1007/s10545-015-9897-6
        • Zhai H.
        • Zheng Y.
        • He Y.
        • et al.
        A case report of infantile parkinsonism-dystonia-2 caused by homozygous mutation in the SLC18A2 gene.
        Int J Neurosci. 2021; : 1-4https://doi.org/10.1080/00207454.2021.1938036
        • Rath M.
        • Korenke G.C.
        • Najm J.
        • et al.
        Exome sequencing results in identification and treatment of brain dopamine-serotonin vesicular transport disease.
        J Neurol Sci. 2017; 379: 296-297https://doi.org/10.1016/j.jns.2017.06.034
        • Padmakumar M.
        • Jaeken J.
        • Ramaekers V.
        • et al.
        A novel missense variant in SLC18A2 causes recessive brain monoamine vesicular transport disease and absent serotonin in platelets.
        JIMD Rep. 2019; 47: 9-16https://doi.org/10.1002/jmd2.12030
        • Ziats M.N.
        • Ahmad A.
        • Bernat J.A.
        • et al.
        Genotype-phenotype analysis of 523 patients by genetics evaluation and clinical exome sequencing.
        Pediatr Res. 2020; 87: 735-739https://doi.org/10.1038/s41390-019-0611-5
        • Patel N.
        • Khan A.O.
        • Alsahli S.
        • et al.
        Genetic investigation of 93 families with microphthalmia or posterior microphthalmos.
        Clin Genet. 2018; 93: 1210-1222https://doi.org/10.1111/cge.13239
        • Sobreira N.
        • Schiettecatte F.
        • Valle D.
        • Hamosh A.
        GeneMatcher: a matching tool for connecting investigators with an interest in the same gene.
        Hum Mutat. 2015; 36: 928-930https://doi.org/10.1002/humu.22844
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581 (Published correction appears in Nature. 2021;590(7846):E53. Published correction appears in Nature. 2021;597(7874):E3-E4.): 434-443
        • Bycroft C.
        • Freeman C.
        • Petkova D.
        • et al.
        The UK Biobank resource with deep phenotyping and genomic data.
        Nature. 2018; 562: 203-209https://doi.org/10.1038/s41586-018-0579-z
        • Castrignanò T.
        • De Meo P.D.
        • Cozzetto D.
        • Talamo I.G.
        • Tramontano A.
        The PMDB Protein Model Database.
        Nucleic Acids Res. 2006; 34: D306-D309https://doi.org/10.1093/nar/gkj105
        • Tunyasuvunakool K.
        • Adler J.
        • Wu Z.
        • et al.
        Highly accurate protein structure prediction for the human proteome.
        Nature. 2021; 596: 590-596https://doi.org/10.1038/s41586-021-03828-1
        • Iyer S.
        • Sam F.S.
        • DiPrimio N.
        • et al.
        Repurposing the aldose reductase inhibitor and diabetic neuropathy drug epalrestat for the congenital disorder of glycosylation PMM2-CDG.
        Dis Model Mech. 2019; 12dmm040584https://doi.org/10.1242/dmm.040584
        • Patten S.A.
        • Aggad D.
        • Martinez J.
        • et al.
        Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis.
        JCI Insight. 2017; 2e97152https://doi.org/10.1172/jci.insight.97152
        • Sato D.X.
        • Kawata M.
        Positive and balancing selection on SLC18A1 gene associated with psychiatric disorders and human-unique personality traits.
        Evol Lett. 2018; 2: 499-510https://doi.org/10.1002/evl3.81
        • Stiernagle T.
        Maintenance of C elegans. WormBook: The Online Review of C. elegans Biology [Internet].
        WormBook, 2005-2018 (https://www.ncbi.nlm.nih.gov/books/NBK19649/)
        • Barlow I.L.
        • Feriani L.
        • Minga E.
        • et al.
        Megapixel camera arrays enable high-resolution animal tracking in multiwell plates.
        Commun Biol. 2022; 5: 253https://doi.org/10.1038/s42003-022-03206-1
        • Javer A.
        • Currie M.
        • Lee C.W.
        • et al.
        An open-source platform for analyzing and sharing worm-behavior data.
        Nat Methods. 2018; 15: 645-646https://doi.org/10.1038/s41592-018-0112-1
        • Javer A.
        • Ripoll-Sánchez L.
        • Brown A.E.X.
        Powerful and interpretable behavioural features for quantitative phenotyping of Caenorhabditis elegans.
        Philos Trans R Soc Lond B Biol Sci. 2018; 37320170375https://doi.org/10.1098/rstb.2017.0375
        • Benjamini Y.
        • Drai D.
        • Elmer G.
        • Kafkafi N.
        • Golani I.
        Controlling the false discovery rate in behavior genetics research.
        Behav Brain Res. 2001; 125: 279-284https://doi.org/10.1016/s0166-4328(01)00297-2
        • Paine I.
        • Posey J.E.
        • Grochowski C.M.
        • et al.
        Paralog studies augment gene discovery: DDX and DHX genes.
        Am J Hum Genet. 2019; 105: 302-316https://doi.org/10.1016/j.ajhg.2019.06.001
        • Ng J.
        • Heales S.J.
        • Kurian M.A.
        Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders.
        Paediatr Drugs. 2014; 16: 275-291https://doi.org/10.1007/s40272-014-0079-z
        • Yaffe D.
        • Radestock S.
        • Shuster Y.
        • Forrest L.R.
        • Schuldiner S.
        Identification of molecular hinge points mediating alternating access in the vesicular monoamine transporter VMAT2.
        Proc Natl Acad Sci U S A. 2013; 110: E1332-E1341https://doi.org/10.1073/pnas.1220497110
        • Yaffe D.
        • Vergara-Jaque A.
        • Forrest L.R.
        • Schuldiner S.
        Emulating proton-induced conformational changes in the vesicular monoamine transporter VMAT2 by mutagenesis.
        Proc Natl Acad Sci U S A. 2016; 113: E7390-E7398https://doi.org/10.1073/pnas.1605162113
        • Yaffe D.
        • Forrest L.R.
        • Schuldiner S.
        The ins and outs of vesicular monoamine transporters.
        J Gen Physiol. 2018; 150: 671-682https://doi.org/10.1085/jgp.201711980
        • Ugolev Y.
        • Segal T.
        • Yaffe D.
        • Gros Y.
        • Schuldiner S.
        Identification of conformationally sensitive residues essential for inhibition of vesicular monoamine transport by the noncompetitive inhibitor tetrabenazine.
        J Biol Chem. 2013; 288: 32160-32171https://doi.org/10.1074/jbc.M113.502971
        • Duerr J.S.
        • Frisby D.L.
        • Gaskin J.
        • et al.
        The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors.
        J Neurosci. 1999; 19: 72-84https://doi.org/10.1523/JNEUROSCI.19-01-00072.1999
        • Burns A.R.
        • Wallace I.M.
        • Wildenhain J.
        • et al.
        A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans.
        Nat Chem Biol. 2010; 6: 549-557https://doi.org/10.1038/nchembio.380
        • Wassenberg T.
        • Molero-Luis M.
        • Jeltsch K.
        • et al.
        Consensus guideline for the diagnosis and treatment of aromatic L-amino acid decarboxylase (AADC) deficiency.
        Orphanet J Rare Dis. 2017; 12: 12https://doi.org/10.1186/s13023-016-0522-z
        • Kurian M.A.
        • Li Y.
        • Zhen J.
        • et al.
        Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study.
        Lancet Neurol. 2011; 10: 54-62https://doi.org/10.1016/S1474-4422(10)70269-6
        • Zhang Y.
        • Zhang Y.
        • Sun K.
        • Meng Z.
        • Chen L.
        The SLC transporter in nutrient and metabolic sensing, regulation, and drug development.
        J Mol Cell Biol. 2019; 11: 1-13https://doi.org/10.1093/jmcb/mjy052
        • Duan R.
        • Saadi N.W.
        • Grochowski C.M.
        • et al.
        A novel homozygous SLC13A5 whole-gene deletion generated by Alu/Alu-mediated rearrangement in an Iraqi family with epileptic encephalopathy.
        Am J Med Genet A. 2021; 185: 1972-1980https://doi.org/10.1002/ajmg.a.62192
        • Marafi D.
        • Fatih J.M.
        • Kaiyrzhanov R.
        • et al.
        Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy.
        Brain. 2022; 145: 909-924https://doi.org/10.1093/brain/awab369
        • Saitsu H.
        • Watanabe M.
        • Akita T.
        • et al.
        Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay.
        Sci Rep. 2016; 630072https://doi.org/10.1038/srep30072
        • Hu C.
        • Tao L.
        • Cao X.
        • Chen L.
        The solute carrier transporters and the brain: physiological and pharmacological implications.
        Asian J Pharm Sci. 2020; 15: 131-144https://doi.org/10.1016/j.ajps.2019.09.002