Advertisement

FOSL2 truncating variants in the last exon cause a neurodevelopmental disorder with scalp and enamel defects

Published:October 04, 2022DOI:https://doi.org/10.1016/j.gim.2022.09.002

      Abstract

      Purpose

      We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex.

      Methods

      Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability.

      Results

      We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed.

      Conclusion

      Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      ACMG Member Login

      Are you an ACMG Member? Sign in for online access.

      Subscribe:

      Subscribe to Genetics in Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ye N.
        • Ding Y.
        • Wild C.
        • Shen Q.
        • Zhou J.
        Small molecule inhibitors targeting activator protein 1 (AP-1).
        J Med Chem. 2014; 57: 6930--6948https://doi.org/10.1021/jm5004733
        • Karin M.
        • Liu Zg
        • Zandi E.
        AP-1 function and regulation.
        Curr Opin Cell Biol. 1997; 9: 240--246https://doi.org/10.1016/s0955-0674(97)80068-3
        • Bejjani F.
        • Evanno E.
        • Zibara K.
        • Piechaczyk M.
        • Jariel-Encontre I.
        The AP-1 transcriptional complex: local switch or remote command?.
        Biochim Biophys Acta Rev Cancer. 2019; 1872: 11--23https://doi.org/10.1016/j.bbcan.2019.04.003
        • Thul P.J.
        • Lindskog C.
        The human protein atlas: a spatial map of the human proteome.
        Protein Sci. 2018; 27: 233--244https://doi.org/10.1002/pro.3307
        • Bozec A.
        • Bakiri L.
        • Jimenez M.
        • Schinke T.
        • Amling M.
        • Wagner E.F.
        Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production.
        J Cell Biol. 2010; 190: 1093--1106https://doi.org/10.1083/jcb.201002111
        • Bozec A.
        • Bakiri L.
        • Hoebertz A.
        • et al.
        Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia.
        Nature. 2008; 454: 221--225https://doi.org/10.1038/nature07019
        • Wagner E.F.
        • Eferl R.
        Fos/AP-1 proteins in bone and the immune system.
        Immunol Rev. 2005; 208: 126--140https://doi.org/10.1111/j.0105-2896.2005.00332.x
        • Jochum W.
        • David J.P.
        • Elliott C.
        • et al.
        Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1.
        Nat Med. 2000; 6 (Published correction appears in Nat Med. 2000;6(12):1412.): 980--984
        • Karreth F.
        • Hoebertz A.
        • Scheuch H.
        • Eferl R.
        • Wagner E.F.
        The AP1 transcription factor Fra2 is required for efficient cartilage development.
        Development. 2004; 131: 5717--5725https://doi.org/10.1242/dev.01414
        • Nishikawa S.
        Localization of transcription factor AP-1 family proteins in ameloblast nuclei of the rat incisor.
        J Histochem Cytochem. 2000; 48: 1511--1520https://doi.org/10.1177/002215540004801108
        • Renoux F.
        • Stellato M.
        • Haftmann C.
        • et al.
        The AP1 transcription factor Fosl2 promotes systemic autoimmunity and inflammation by repressing Treg development.
        Cell Rep. 2020; 31107826https://doi.org/10.1177/002215540004801108
        • Nam S.
        • Lim J.S.
        Essential role of interferon regulatory factor 4 (IRF4) in immune cell development.
        Arch Pharm Res. 2016; 39: 1548--1555https://doi.org/10.1007/s12272-016-0854-1
        • Cabrera-Ortega A.A.
        • Feinberg D.
        • Liang Y.
        • Rossa C.
        • Graves D.T.
        The role of forkhead box 1 (FOXO1) in the immune system: dendritic cells, T cells, B cells, and hematopoietic stem cells.
        Crit Rev Immunol. 2017; 37: 1--13https://doi.org/10.1615/CritRevImmunol.2017019636
        • Ubieta K.
        • Garcia M.
        • Grötsch B.
        • et al.
        Fra-2 regulates B cell development by enhancing IRF4 and Foxo1 transcription.
        J Exp Med. 2017; 214: 2059--2071https://doi.org/10.1084/jem.20160514
        • Sobreira N.
        • Schiettecatte F.
        • Valle D.
        • Hamosh A.
        GeneMatcher: a matching tool for connecting investigators with an interest in the same gene.
        Hum Mutat. 2015; 36: 928--930https://doi.org/10.1002/humu.22844
        • Luque J.
        • Mendes I.
        • Gómez B.
        • et al.
        CIBERER: Spanish national network for research on rare diseases: a highly productive collaborative initiative.
        Clin Genet. 2022; 101: 481--493https://doi.org/10.1111/cge.14113
        • Dumbryte I.
        • Vailionis A.
        • Skliutas E.
        • Juodkazis S.
        • Malinauskas M.
        Three-dimensional non-destructive visualization of teeth enamel microcracks using X-ray micro-computed tomography.
        Sci Rep. 2021; 1114810https://doi.org/10.1038/s41598-021-94303-4
        • Caparrós-Martín J.A.
        • Valencia M.
        • Reytor E.
        • et al.
        The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia.
        Hum Mol Genet. 2013; 22: 124--139https://doi.org/10.1093/hmg/dds409
        • Gomard T.
        • Jariel-Encontre I.
        • Basbous J.
        • Bossis G.
        • Moquet-Torcy G.
        • Piechaczyk M.
        Fos family protein degradation by the proteasome.
        Biochem Soc Trans. 2008; 36 (Published correction appears in Biochem Soc Trans. 2013;41(6):1773.): 858-863
        • Supek F.
        • Lehner B.
        • Lindeboom R.G.H.
        To NMD or not to NMD: nonsense-mediated mRNA decay in cancer and other genetic diseases.
        Trends Genet. 2021; 37: 657--668https://doi.org/10.1016/j.tig.2020.11.002
      1. Lehman A, Wuyts W, Patel MS. Adams-Oliver syndrome. In: Adam MP, Everman DB, Mirzaa GM, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 1993-2022.

        • Hassed S.
        • Li S.
        • Mulvihill J.
        • Aston C.
        • Palmer S.
        Adams-Oliver syndrome review of the literature: refining the diagnostic phenotype.
        Am J Med Genet A. 2017; 173: 790--800https://doi.org/10.1002/ajmg.a.37889
        • Snape K.M.G.
        • Ruddy D.
        • Zenker M.
        • et al.
        The spectra of clinical phenotypes in aplasia cutis congenita and terminal transverse limb defects.
        Am J Med Genet A. 2009; 149A: 1860--1881https://doi.org/10.1002/ajmg.a.32708
        • Levinger N.
        • Hendler K.
        • Banin E.
        • et al.
        Variable phenotype of Knobloch syndrome due to biallelic COL18A1 mutations in children.
        Eur J Ophthalmol. 2021; 31: 3349--3354https://doi.org/10.1177/1120672120977343
        • Aldahmesh M.A.
        • Khan A.O.
        • Mohamed J.Y.
        • et al.
        Identification of ADAMTS18 as a gene mutated in Knobloch syndrome.
        J Med Genet. 2011; 48: 597--601https://doi.org/10.1136/jmedgenet-2011-100306
        • Caglayan A.O.
        • Baranoski J.F.
        • Aktar F.
        • et al.
        Brain malformations associated with Knobloch syndrome—review of literature, expanding clinical spectrum, and identification of novel mutations.
        Pediatr Neurol. 2014; 51: 806--813.e8https://doi.org/10.1016/j.pediatrneurol.2014.08.025
        • Sabandal M.M.I.
        • Schäfer E.
        Amelogenesis imperfecta: review of diagnostic findings and treatment concepts.
        Odontology. 2016; 104: 245--256https://doi.org/10.1007/s10266-016-0266-1
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581 (Published correction appears in Nature. 2021;590(7846):E53. Published correction appears in Nature. 2021;597(7874):E3-E4.): 434-443
        • Swaminathan G.J.
        • Bragin E.
        • Chatzimichali E.A.
        • et al.
        DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders.
        Hum Mol Genet. 2012; 21: R37--R44https://doi.org/10.1093/hmg/dds362
        • Brennan A.
        • Leech J.T.
        • Kad N.M.
        • Mason J.M.
        Selective antagonism of cJun for cancer therapy.
        J Exp Clin Cancer Res. 2020; 39: 184https://doi.org/10.1186/s13046-020-01686-9
        • Wenderski W.
        • Wang L.
        • Krokhotin A.
        • et al.
        Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism.
        Proc Natl Acad Sci U S A. 2020; 117: 10055--10066https://doi.org/10.1073/pnas.1908238117
        • Gao F.
        • Elliott N.J.
        • Ho J.
        • Sharp A.
        • Shokhirev M.N.
        • Hargreaves D.C.
        Heterozygous mutations in SMARCA2 reprogram the enhancer landscape by global retargeting of SMARCA4.
        Mol Cell. 2019; 75: 891--904.e7https://doi.org/10.1016/j.molcel.2019.06.024
        • Maeda Y.
        • Miwa Y.
        • Sato I.
        Distribution of the neuropeptide calcitonin gene-related peptide-α of tooth germ during formation of the mouse mandible.
        Ann Anat. 2019; 221: 38--47https://doi.org/10.1016/j.aanat.2018.09.001
        • Ren W.
        • Yang L.
        • Deng T.
        • et al.
        Calcitonin gene-related peptide regulates FOSL2 expression and cell proliferation of BMSCs via mmu_circRNA_003795.
        Mol Med Rep. 2019; 19: 3732--3742https://doi.org/10.3892/mmr.2019.10038
        • Zhang Y.
        • Li W.
        • Chi H.S.
        • Chen J.
        • Denbesten P.K.
        JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro.
        Matrix Biol. 2007; 26: 633--641https://doi.org/10.1016/j.matbio.2007.06.002
        • Kim Y.J.
        • Kang J.
        • Seymen F.
        • et al.
        Analyses of MMP20 missense mutations in two families with hypomaturation amelogenesis imperfecta.
        Front Physiol. 2017; 8: 229https://doi.org/10.3389/fphys.2017.00229
        • Caterina J.J.
        • Skobe Z.
        • Shi J.
        • et al.
        Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype.
        J Biol Chem. 2002; 277: 49598--49604https://doi.org/10.1074/jbc.M209100200
        • Brackenrich J.
        • Brown A.
        Aplasia cutis congenita.
        in: StatPearls [Internet]. StatPearls Publishing, 2022
        • Maurer B.
        • Distler J.H.W.
        • Distler O.
        The Fra-2 transgenic mouse model of systemic sclerosis.
        Vascul Pharmacol. 2013; 58: 194-201https://doi.org/10.1016/j.vph.2012.12.001
        • Zhao Y.
        • Zheng D.
        • Cvekl A.
        Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways.
        Epigenetics Chromatin. 2019; 12: 27https://doi.org/10.1186/s13072-019-0272-y