Advertisement

The p190 RhoGAPs, ARHGAP35, and ARHGAP5 are implicated in GnRH neuronal development: Evidence from patients with idiopathic hypogonadotropic hypogonadism, zebrafish, and in vitro GAP activity assay

Published:September 29, 2022DOI:https://doi.org/10.1016/j.gim.2022.08.025

      Abstract

      Purpose

      The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH).

      Methods

      A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase–activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay.

      Results

      Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities.

      Conclusion

      This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      ACMG Member Login

      Are you an ACMG Member? Sign in for online access.

      Subscribe:

      Subscribe to Genetics in Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Balasubramanian R.
        • Crowley Jr., W.F.
        Isolated GnRH deficiency: a disease model serving as a unique prism into the systems biology of the GnRH neuronal network.
        Mol Cell Endocrinol. 2011; 346: 4-12https://doi.org/10.1016/j.mce.2011.07.012
        • Laitinen E.M.
        • Vaaralahti K.
        • Tommiska J.
        • et al.
        Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland.
        Orphanet J Rare Dis. 2011; 6: 41https://doi.org/10.1186/1750-1172-6-41
      1. Shaw ND, Brand H, Kupchinsky ZA, et al. SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nat Genet. 2017;49(2):238-248. Published correction appears in Nat Genet. 2017;49(6):969. https://doi.org/10.1038/ng.3743

        • Davis E.E.
        • Balasubramanian R.
        • Kupchinsky Z.A.
        • et al.
        TCF12 haploinsufficiency causes autosomal dominant Kallmann syndrome and reveals network-level interactions between causal loci.
        Hum Mol Genet. 2020; 29: 2435-2450https://doi.org/10.1093/hmg/ddaa120
        • Rojas R.A.
        • Kutateladze A.A.
        • Plummer L.
        • et al.
        Phenotypic continuum between Waardenburg syndrome and idiopathic hypogonadotropic hypogonadism in humans with SOX10 variants.
        Genet Med. 2021; 23: 629-636https://doi.org/10.1038/s41436-020-01051-3
      2. Stamou MI, Cox KH, Crowley WF Jr. Discovering genes essential to the hypothalamic regulation of human reproduction using a human disease model: adjusting to life in the “-Omics” era. Endocr Rev. 2015;36(6):603-621. Published correction appears in Endocr Rev. 2020;41(6):886. https://doi.org/10.1210/er.2015-1045

        • Brouns M.R.
        • Matheson S.F.
        • Hu K.Q.
        • et al.
        The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development.
        Development. 2000; 127: 4891-4903https://doi.org/10.1242/dev.127.22.4891
        • Brouns M.R.
        • Matheson S.F.
        • Settleman J.
        p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation.
        Nat Cell Biol. 2001; 3: 361-367https://doi.org/10.1038/35070042
        • Matheson S.F.
        • Hu K.Q.
        • Brouns M.R.
        • Sordella R.
        • VanderHeide J.D.
        • Settleman J.
        Distinct but overlapping functions for the closely related p190 RhoGAPs in neural development.
        Dev Neurosci. 2006; 28: 538-550https://doi.org/10.1159/000095116
      3. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443. Published correction appears in Nature. 2021;590(7846):E53. Published correction appears in Nature. 2021;597(7874):E3-E4. https://doi.org/10.1038/s41586-020-2308-7

        • Burbelo P.D.
        • Miyamoto S.
        • Utani A.
        • et al.
        p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking.
        J Biol Chem. 1995; 270: 30919-30926https://doi.org/10.1074/jbc.270.52.30919
        • Barberis D.
        • Casazza A.
        • Sordella R.
        • et al.
        p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling.
        J Cell Sci. 2005; 118: 4689-4700https://doi.org/10.1242/jcs.02590
        • Messina A.
        • Giacobini P.
        Semaphorin signaling in the development and function of the gonadotropin hormone-releasing hormone system.
        Front Endocrinol (Lausanne). 2013; 4: 133https://doi.org/10.3389/fendo.2013.00133
        • Kaplanis J.
        • Samocha K.E.
        • Wiel L.
        • et al.
        Evidence for 28 genetic disorders discovered by combining healthcare and research data.
        Nature. 2020; 586: 757-762https://doi.org/10.1038/s41586-020-2832-5
        • Sobreira N.
        • Schiettecatte F.
        • Valle D.
        • Hamosh A.
        GeneMatcher: a matching tool for connecting investigators with an interest in the same gene.
        Hum Mutat. 2015; 36: 928-930https://doi.org/10.1002/humu.22844
        • Guo M.H.
        • Plummer L.
        • Chan Y.M.
        • Hirschhorn J.N.
        • Lippincott M.F.
        Burden testing of rare variants identified through exome sequencing via publicly available control data.
        Am J Hum Genet. 2018; 103: 522-534https://doi.org/10.1016/j.ajhg.2018.08.016
        • Adzhubei I.
        • Jordan D.M.
        • Sunyaev S.R.
        Predicting functional effect of human missense mutations using PolyPhen-2.
        Curr Protoc Hum Genet. 2013; (Chapter 7:Unit7.20. https://doi.org/10.1002/0471142905.hg0720s76)
        • Choi Y.
        • Sims G.E.
        • Murphy S.
        • Miller J.R.
        • Chan A.P.
        Predicting the functional effect of amino acid substitutions and indels.
        PLoS One. 2012; 7e46688https://doi.org/10.1371/journal.pone.0046688
        • Schwarz J.M.
        • Cooper D.N.
        • Schuelke M.
        • Seelow D.
        MutationTaster2: mutation prediction for the deep-sequencing age.
        Nat Methods. 2014; 11: 361-362https://doi.org/10.1038/nmeth.2890
      4. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-D612. Published correction appears in Nucleic Acids Res. 2021;49(18):10800. https://doi.org/10.1093/nar/gkaa1074

        • Abraham E.
        • Palevitch O.
        • Gothilf Y.
        • Zohar Y.
        The zebrafish as a model system for forebrain GnRH neuronal development.
        Gen Comp Endocrinol. 2009; 164: 151-160https://doi.org/10.1016/j.ygcen.2009.01.012
        • Labun K.
        • Montague T.G.
        • Krause M.
        • Torres Cleuren Y.N.
        • Tjeldnes H.
        • Valen E.
        CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing.
        Nucleic Acids Res. 2019; 47: W171-W174https://doi.org/10.1093/nar/gkz365
        • Stewart K.
        • Gaitan Y.
        • Shafer M.E.
        • et al.
        A point mutation in p190A RhoGAP affects ciliogenesis and leads to glomerulocystic kidney defects.
        PLoS Genet. 2016; 12e1005785https://doi.org/10.1371/journal.pgen.1005785
        • Quinton R.
        • Cheow H.K.
        • Tymms D.J.
        • Bouloux P.M.
        • Wu F.C.
        • Jacobs H.S.
        Kallmann’s syndrome: is it always for life?.
        Clin Endocrinol (Oxf). 1999; 50: 481-485https://doi.org/10.1046/j.1365-2265.1999.00708.x
        • Balasubramanian R.
        • Chew S.
        • MacKinnon S.E.
        • et al.
        Expanding the phenotypic spectrum and variability of endocrine abnormalities associated with TUBB3 E410K syndrome.
        J Clin Endocrinol Metab. 2015; 100: E473-E477https://doi.org/10.1210/jc.2014-4107
        • Latremoliere A.
        • Cheng L.
        • DeLisle M.
        • et al.
        Neuronal-specific TUBB3 is not required for normal neuronal function but is essential for timely axon regeneration.
        Cell Rep. 2018; 24: 1865-1879.e9https://doi.org/10.1016/j.celrep.2018.07.029
        • Hanchate N.K.
        • Giacobini P.
        • Lhuillier P.
        • et al.
        SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome.
        PLoS Genet. 2012; 8e1002896https://doi.org/10.1371/journal.pgen.1002896
        • Ng P.C.
        • Henikoff S.
        SIFT: Predicting amino acid changes that affect protein function.
        Nucleic Acids Res. 2003; 31: 3812-3814https://doi.org/10.1093/nar/gkg509
        • Howard S.R.
        • Guasti L.
        • Ruiz-Babot G.
        • et al.
        IGSF10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty.
        EMBO Mol Med. 2016; 8: 626-642https://doi.org/10.15252/emmm.201606250
      5. Postlethwait JH, Yan YL, Gates MA, et al. Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998;18(4):345-349. Published correction appears in Nat Genet 1998;19(3):303. https://doi.org/10.1038/ng0498-345

      6. Borck G, Hög F, Dentici ML, et al. BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies. Genome Res. 2015;25(2):155-166. Published correction appears in Genome Res. 2015;25(4):609. https://doi.org/10.1101/gr.176925.114

        • Takamiya M.
        • Stegmaier J.
        • Kobitski A.Y.
        • et al.
        Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves.
        PLoS Genet. 2020; 16e1008774https://doi.org/10.1371/journal.pgen.1008774
        • Liu H.
        • Rigamonti D.
        • Badr A.
        • Zhang J.
        Ccm1 regulates microvascular morphogenesis during angiogenesis.
        J Vasc Res. 2011; 48: 130-140https://doi.org/10.1159/000316851
        • Teng C.S.
        • Ting M.C.
        • Farmer D.T.
        • Brockop M.
        • Maxson R.E.
        • Crump J.G.
        Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome.
        Elife. 2018; 7e37024https://doi.org/10.7554/eLife.37024
        • Kontarakis Z.
        • Stainier D.Y.R.
        Genetics in light of transcriptional adaptation.
        Trends Genet. 2020; 36: 926-935https://doi.org/10.1016/j.tig.2020.08.008
        • Jenna S.
        • Lamarche-Vane N.
        The superfamily of Rho GTPase-activating proteins.
        in: Symons M. RhoGTPases. Kluwer Academic /Plenum Publishers, 2004: 68-87
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424https://doi.org/10.1038/gim.2015.30
        • Héraud C.
        • Pinault M.
        • Lagrée V.
        • Moreau V.
        p190RhoGAPs, the ARHGAP35- and ARHGAP5-encoded proteins, in health and disease.
        Cells. 2019; 8: 351https://doi.org/10.3390/cells8040351
        • Miller J.A.
        • Ding S.L.
        • Sunkin S.M.
        • et al.
        Data from: Transcriptional landscape of the prenatal human brain.
        Nature. 2014; 508: 199-206https://doi.org/10.1038/nature13185
        • Lund C.
        • Yellapragada V.
        • Vuoristo S.
        • et al.
        Characterization of the human GnRH neuron developmental transcriptome using a GNRH1-TdTomato reporter line in human pluripotent stem cells.
        Dis Model Mech. 2020; 13dmm040105https://doi.org/10.1242/dmm.040105
        • Burger L.L.
        • Vanacker C.
        • Phumsatitpong C.
        • et al.
        Identification of genes enriched in GnRH neurons by translating ribosome affinity purification and RNAseq in mice.
        Endocrinology. 2018; 159: 1922-1940https://doi.org/10.1210/en.2018-00001
        • Merchenthaler I.
        • Görcs T.
        • Sétáló G.
        • Petrusz P.
        • Flerkó B.
        Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain.
        Cell Tissue Res. 1984; 237: 15-29https://doi.org/10.1007/BF00229195
        • Siffredi V.
        • Anderson V.
        • Leventer R.J.
        • Spencer-Smith M.M.
        Neuropsychological profile of agenesis of the corpus callosum: a systematic review.
        Dev Neuropsychol. 2013; 38: 36-57https://doi.org/10.1080/87565641.2012.721421
        • Ridley B.
        • Beltramone M.
        • Wirsich J.
        • et al.
        Alien hand, restless brain: salience network and interhemispheric connectivity disruption parallel emergence and extinction of diagonistic dyspraxia.
        Front Hum Neurosci. 2016; 10: 307https://doi.org/10.3389/fnhum.2016.00307
        • Cariboni A.
        • Davidson K.
        • Rakic S.
        • Maggi R.
        • Parnavelas J.G.
        • Ruhrberg C.
        Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism.
        Hum Mol Genet. 2011; 20: 336-344https://doi.org/10.1093/hmg/ddq468
        • Marcos S.
        • Monnier C.
        • Rovira X.
        • et al.
        Defective signaling through plexin-A1 compromises the development of the peripheral olfactory system and neuroendocrine reproductive axis in mice.
        Hum Mol Genet. 2017; 26: 2006-2017https://doi.org/10.1093/hmg/ddx080
        • Kotan L.D.
        • Ternier G.
        • Cakir A.D.
        • et al.
        Loss-of-function variants in SEMA3F and PLXNA3 encoding semaphorin-3F and its receptor plexin-A3 respectively cause idiopathic hypogonadotropic hypogonadism.
        Genet Med. 2021; 23: 1008-1016https://doi.org/10.1038/s41436-020-01087-5