Advertisement

Heterozygous UCHL1 loss-of-function variants cause a neurodegenerative disorder with spasticity, ataxia, neuropathy, and optic atrophy

Published:August 19, 2022DOI:https://doi.org/10.1016/j.gim.2022.07.006

      ABSTRACT

      Purpose

      Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses.

      Methods

      Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients’ fibroblasts were used to perform mass spectrometry-based proteomics.

      Results

      UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients’ fibroblasts.

      Conclusion

      Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      ACMG Member Login

      Are you an ACMG Member? Sign in for online access.

      Subscribe:

      Subscribe to Genetics in Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bourassa C.V.
        • Meijer I.A.
        • Merner N.D.
        • et al.
        VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families.
        Am J Hum Genet. 2012; 91: 548-552https://doi.org/10.1016/j.ajhg.2012.07.018
        • de Bot S.T.
        • Willemsen M.A.
        • Vermeer S.
        • Kremer H.P.
        • van de Warrenburg B.P.
        Reviewing the genetic causes of spastic-ataxias.
        Neurology. 2012; 79: 1507-1514https://doi.org/10.1212/WNL.0b013e31826d5fb0
        • Meijer I.A.
        • Hand C.K.
        • Grewal K.K.
        • Stefanelli M.G.
        • Ives E.J.
        • Rouleau G.A.
        A locus for autosomal dominant hereditary spastic ataxia, SAX1, maps to chromosome 12p13.
        Am J Hum Genet. 2002; 70: 763-769https://doi.org/10.1086/338933
        • Synofzik M.
        • Schüle R.
        Overcoming the divide between ataxias and spastic paraplegias: shared phenotypes, genes, and pathways.
        Mov Disord. 2017; 32: 332-345https://doi.org/10.1002/mds.26944
        • Ngo K.J.
        • Rexach J.E.
        • Lee H.
        • et al.
        A diagnostic ceiling for exome sequencing in cerebellar ataxia and related neurological disorders.
        Hum Mutat. 2020; 41: 487-501https://doi.org/10.1002/humu.23946
        • Schüle R.
        • Wiethoff S.
        • Martus P.
        • et al.
        Hereditary spastic paraplegia: clinicogenetic lessons from 608 patients.
        Ann Neurol. 2016; 79: 646-658https://doi.org/10.1002/ana.24611
        • Bilguvar K.
        • Tyagi N.K.
        • Ozkara C.
        • et al.
        Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration.
        Proc Natl Acad Sci U S A. 2013; 110: 3489-3494https://doi.org/10.1073/pnas.1222732110
        • Das Bhowmik A.
        • Patil S.J.
        • Deshpande D.V.
        • Bhat V.
        • Dalal A.
        Novel splice-site variant of UCHL1 in an Indian family with autosomal recessive spastic paraplegia-79.
        J Hum Genet. 2018; 63: 927-933https://doi.org/10.1038/s10038-018-0463-6
        • Rydning S.L.
        • Backe P.H.
        • Sousa M.M.L.
        • et al.
        Novel UCHL1 mutations reveal new insights into ubiquitin processing.
        Hum Mol Genet. 2017; 26 (Published correction appears in Hum Mol Genet. 2017;26(6):1217–1218): 1031-1040
        • Lowe J.
        • McDermott H.
        • Landon M.
        • Mayer R.J.
        • Wilkinson K.D.
        Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases.
        J Pathol. 1990; 161: 153-160https://doi.org/10.1002/path.1711610210
        • Komander D.
        • Clague M.J.
        • Urbé S.
        Breaking the chains: structure and function of the deubiquitinases.
        Nat Rev Mol Cell Biol. 2009; 10: 550-563https://doi.org/10.1038/nrm2731
        • Jara J.H.
        • Frank D.D.
        • Özdinler P.H.
        Could dysregulation of UPS be a common underlying mechanism for cancer and neurodegeneration? Lessons from UCHL1.
        Cell Biochem Biophys. 2013; 67: 45-53https://doi.org/10.1007/s12013-013-9631-7
        • Choi J.
        • Levey A.I.
        • Weintraub S.T.
        • et al.
        Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases.
        J Biol Chem. 2004; 279: 13256-13264https://doi.org/10.1074/jbc.M314124200
        • Nishikawa K.
        • Li H.
        • Kawamura R.
        • et al.
        Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants.
        Biochem Biophys Res Commun. 2003; 304: 176-183https://doi.org/10.1016/s0006-291x(03)00555-2
        • Falb R.J.
        • Müller A.J.
        • Klein W.
        • et al.
        Bi-allelic loss-of-function variants in KIF21A cause severe fetal akinesia with arthrogryposis multiplex.
        J Med Genet. 2021; (jmedgenet-2021-108064)
        • Weisschuh N.
        • Mazzola P.
        • Heinrich T.
        • et al.
        First submicroscopic inversion of the OPA1 gene identified in dominant optic atrophy – a case report.
        BMC Med Genet. 2020; 21: 236https://doi.org/10.1186/s12881-020-01166-z
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424https://doi.org/10.1038/gim.2015.30
        • Susak H.
        • Serra-Saurina L.
        • Demidov G.
        • et al.
        Efficient and flexible integration of variant characteristics in rare variant association studies using integrated nested Laplace approximation.
        PLoS Comput Biol. 2021; 17e1007784https://doi.org/10.1371/journal.pcbi.1007784
      1. 100,000 Genomes Project Pilot Investigators, Smedley D, Smith KR, et al. 100,000 Genomes pilot on rare-disease diagnosis in health care - preliminary report. N Engl J Med. 385(20):1868–1880. http://doi.org/10.1056/NEJMoa2035790.

        • Smedley D.
        • Jacobsen J.O.
        • Jäger M.
        • et al.
        Next-generation diagnostics and disease-gene discovery with the Exomiser.
        Nat Protoc. 2015; 10: 2004-2015https://doi.org/10.1038/nprot.2015.124
        • Havrilla J.M.
        • Pedersen B.S.
        • Layer R.M.
        • Quinlan A.R.
        A map of constrained coding regions in the human genome.
        Nat Genet. 2019; 51: 88-95https://doi.org/10.1038/s41588-018-0294-6
        • Martin A.R.
        • Williams E.
        • Foulger R.E.
        • et al.
        PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels.
        Nat Genet. 2019; 51: 1560-1565https://doi.org/10.1038/s41588-019-0528-2
        • Dolzhenko E.
        • Deshpande V.
        • Schlesinger F.
        • et al.
        ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions.
        Bioinformatics. 2019; 35: 4754-4756https://doi.org/10.1093/bioinformatics/btz431
        • Köhler S.
        • Gargano M.
        • Matentzoglu N.
        • et al.
        The Human Phenotype Ontology in 2021.
        Nucleic Acids Res. 2021; 49: D1207-D1217https://doi.org/10.1093/nar/gkaa1043
        • Hengel H.
        • Hannan S.B.
        • Dyack S.
        • et al.
        Bi-allelic loss-of-function variants in BCAS3 cause a syndromic neurodevelopmental disorder.
        Am J Hum Genet. 2021; 108: 1069-1082https://doi.org/10.1016/j.ajhg.2021.04.024
        • Parodi L.
        • Fenu S.
        • Barbier M.
        • et al.
        Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex.
        Brain. 2018; 141: 3331-3342https://doi.org/10.1093/brain/awy285
        • Goizet C.
        • Boukhris A.
        • Mundwiller E.
        • et al.
        Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10.
        Hum Mutat. 2009; 30: E376-E385https://doi.org/10.1002/humu.20920
        • McMacken G.
        • Lochmüller H.
        • Bansagi B.
        • et al.
        Behr syndrome and hypertrophic cardiomyopathy in a family with a novel UCHL1 deletion.
        J Neurol. 2020; 267: 3643-3649https://doi.org/10.1007/s00415-020-10059-3
        • Turner M.R.
        • Rabiner E.A.
        • Al-Chalabi A.
        • et al.
        Cortical 5-HT1A receptor binding in patients with homozygous D90A SOD1 vs sporadic ALS.
        Neurology. 2007; 68: 1233-1235https://doi.org/10.1212/01.wnl.0000259083.31837.64
        • Chen F.
        • Sugiura Y.
        • Myers K.G.
        • Liu Y.
        • Lin W.
        Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction.
        Proc Natl Acad Sci U S A. 2010; 107: 1636-1641https://doi.org/10.1073/pnas.0911516107
        • Auer-Grumbach M.
        • Toegel S.
        • Schabhüttl M.
        • et al.
        Rare variants in MME, encoding metalloprotease neprilysin, are linked to late-onset autosomal-dominant axonal polyneuropathies.
        Am J Hum Genet. 2016; 99: 607-623https://doi.org/10.1016/j.ajhg.2016.07.008
        • Depondt C.
        • Donatello S.
        • Rai M.
        • et al.
        MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43).
        Neurol Genet. 2016; 2: e94https://doi.org/10.1212/NXG.0000000000000094
        • Guglielmotto M.
        • Monteleone D.
        • Vasciaveo V.
        • et al.
        The decrease of Uch-L1 activity is a common mechanism responsible for Aβ 42 accumulation in Alzheimer’s and vascular disease.
        Front Aging Neurosci. 2017; 9: 320https://doi.org/10.3389/fnagi.2017.00320
      2. Maraganore DM, Lesnick TG, Elbaz A, et al. UCHL1 is a Parkinson’s disease susceptibility gene. Ann Neurol. 2004;55(4):512-521. Published correction appears in Ann Neurol. 2004;55(6):899. http://doi.org/10.1002/ana.20017.

        • Healy D.G.
        • Abou-Sleiman P.M.
        • Casas J.P.
        • et al.
        UCHL-1 is not a Parkinson’s disease susceptibility gene.
        Ann Neurol. 2006; 59: 627-633https://doi.org/10.1002/ana.20757
        • Zhang M.
        • Cai F.
        • Zhang S.
        • Zhang S.
        • Song W.
        Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo.
        Sci Rep. 2014; 4: 7298https://doi.org/10.1038/srep07298
        • Gong B.
        • Cao Z.
        • Zheng P.
        • et al.
        Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory.
        Cell. 2006; 126: 775-788https://doi.org/10.1016/j.cell.2006.06.046
        • Oeckl P.
        • Weydt P.
        • Thal D.R.
        • Weishaupt J.H.
        • Ludolph A.C.
        • Otto M.
        Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral sclerosis.
        Acta Neuropathol. 2020; 139: 119-134https://doi.org/10.1007/s00401-019-02093-x
        • Carrieri C.
        • Cimatti L.
        • Biagioli M.
        • et al.
        Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat.
        Nature. 2012; 491: 454-457https://doi.org/10.1038/nature11508
        • Zucchelli S.
        • Fasolo F.
        • Russo R.
        • et al.
        SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells.
        Front Cell Neurosci. 2015; 9: 174https://doi.org/10.3389/fncel.2015.00174