Advertisement

Centers for Mendelian Genomics: A decade of facilitating gene discovery

Published:February 08, 2022DOI:https://doi.org/10.1016/j.gim.2021.12.005

      Abstract

      Purpose

      Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration.

      Methods

      Over the past 10 years, the National Institutes of Health–supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution.

      Results

      We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher.

      Conclusion

      The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      ACMG Member Login

      Are you an ACMG Member? Sign in for online access.

      Subscribe:

      Subscribe to Genetics in Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lupski J.R.
        • Reid J.G.
        • Gonzaga-Jauregui C.
        • et al.
        Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy.
        N Engl J Med. 2010; 362: 1181-1191https://doi.org/10.1056/NEJMoa0908094
        • Bainbridge M.N.
        • Wiszniewski W.
        • Murdock D.R.
        • et al.
        Whole-genome sequencing for optimized patient management.
        Sci Transl Med. 2011; 3: 87re3https://doi.org/10.1126/scitranslmed.3002243
        • Ng S.B.
        • Turner E.H.
        • Robertson P.D.
        • et al.
        Targeted capture and massively parallel sequencing of 12 human exomes.
        Nature. 2009; 461: 272-276https://doi.org/10.1038/nature08250
        • Ng S.B.
        • Buckingham K.J.
        • Lee C.
        • et al.
        Exome sequencing identifies the cause of a Mendelian disorder.
        Nat Genet. 2010; 42: 30-35https://doi.org/10.1038/ng.499
        • Biesecker L.G.
        Exome sequencing makes medical genomics a reality.
        Nat Genet. 2010; 42: 13-14https://doi.org/10.1038/ng0110-13
        • Beaulieu C.L.
        • Majewski J.
        • Schwartzentruber J.
        • et al.
        FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.
        Am J Hum Genet. 2014; 94: 809-817https://doi.org/10.1016/j.ajhg.2014.05.003
        • Wright C.F.
        • McRae J.F.
        • Clayton S.
        • et al.
        Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders.
        Genet Med. 2018; 20: 1216-1223https://doi.org/10.1038/gim.2017.246
        • Splinter K.
        • Adams D.R.
        • Bacino C.A.
        • et al.
        Effect of genetic diagnosis on patients with previously undiagnosed disease.
        N Engl J Med. 2018; 379: 2131-2139https://doi.org/10.1056/NEJMoa1714458
        • Austin C.P.
        • Cutillo C.M.
        • Lau L.P.L.
        • et al.
        Future of rare diseases research 2017-2027: an IRDiRC perspective.
        Clin Transl Sci. 2018; 11: 21-27https://doi.org/10.1111/cts.12500
        • Bamshad M.J.
        • Shendure J.A.
        • Valle D.
        • et al.
        The Centers for Mendelian Genomics: a new large-scale initiative to identify the genes underlying rare Mendelian conditions.
        Am J Med Genet A. 2012; 158A: 1523-1525https://doi.org/10.1002/ajmg.a.35470
        • Chong J.X.
        • Buckingham K.J.
        • Jhangiani S.N.
        • et al.
        The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities.
        Am J Hum Genet. 2015; 97: 199-215https://doi.org/10.1016/j.ajhg.2015.06.009
        • Posey J.E.
        • O’Donnell-Luria A.H.
        • Chong J.X.
        • et al.
        Insights into genetics, human biology and disease gleaned from family based genomic studies.
        Genet Med. 2019; 21: 798-812https://doi.org/10.1038/s41436-018-0408-7
        • Azzariti D.R.
        • Hamosh A.
        Genomic data sharing for novel Mendelian disease gene discovery: the Matchmaker Exchange.
        Annu Rev Genomics Hum Genet. 2020; 21: 305-326https://doi.org/10.1146/annurev-genom-083118-014915
        • Bryen S.J.
        • Joshi H.
        • Evesson F.J.
        • et al.
        Pathogenic abnormal splicing due to intronic deletions that induce biophysical space constraint for spliceosome assembly.
        Am J Hum Genet. 2019; 105: 573-587https://doi.org/10.1016/j.ajhg.2019.07.013
        • Bryen S.J.
        • Ewans L.J.
        • Pinner J.
        • et al.
        Recurrent TTN metatranscript-only c.39974-11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy.
        Hum Mutat. 2020; 41: 403-411https://doi.org/10.1002/humu.23938
        • Wahlster L.
        • Verboon J.M.
        • Ludwig L.S.
        • et al.
        Familial thrombocytopenia due to a complex structural variant resulting in a WAC-ANKRD26 fusion transcript.
        J Exp Med. 2021; 218e20210444https://doi.org/10.1084/jem.20210444
        • LaCroix A.J.
        • Stabley D.
        • Sahraoui R.
        • et al.
        GGC repeat expansion and exon 1 methylation of XYLT1 is a common pathogenic variant in Baratela-Scott syndrome.
        Am J Hum Genet. 2019; 104: 35-44https://doi.org/10.1016/j.ajhg.2018.11.005
      1. Mendelian traits by the numbers. Centers for Mendelian Genomics.
        (Accessed September 9, 2021)
        • Amberger J.S.
        • Bocchini C.A.
        • Scott A.F.
        • Hamosh A.
        OMIM.org: leveraging knowledge across phenotype-gene relationships.
        Nucleic Acids Res. 2019; 47: D1038-D1043https://doi.org/10.1093/nar/gky1151
        • Lee-Barber J.
        • English T.E.
        • Britton J.F.
        • et al.
        Apparent acetaminophen toxicity in a patient with transaldolase deficiency.
        JIMD Rep. 2019; 44: 9-15https://doi.org/10.1007/8904_2018_116
        • Hanczko R.
        • Fernandez D.R.
        • Doherty E.
        • et al.
        Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine.
        J Clin Invest. 2009; 119: 1546-1557https://doi.org/10.1172/JCI35722
        • Donkervoort S.
        • Mohassel P.
        • Laugwitz L.
        • et al.
        Biallelic loss of function variants in SYT2 cause a treatable congenital onset presynaptic myasthenic syndrome.
        Am J Med Genet A. 2020; 182: 2272-2283https://doi.org/10.1002/ajmg.a.61765
        • van Karnebeek C.D.M.
        • Ramos R.J.
        • Wen X.Y.
        • et al.
        Bi-allelic GOT2 mutations cause a treatable malate-aspartate shuttle-related encephalopathy.
        Am J Hum Genet. 2019; 105: 534-548https://doi.org/10.1016/j.ajhg.2019.07.015
        • Marafi D.
        • Mitani T.
        • Isikay S.
        • et al.
        Biallelic GRM7 variants cause epilepsy, microcephaly, and cerebral atrophy.
        Ann Clin Transl Neurol. 2020; 7: 610-627https://doi.org/10.1002/acn3.51003
        • Bean L.J.H.
        • Funke B.
        • Carlston C.M.
        • et al.
        Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG).
        Genet Med. 2020; 22: 453-461https://doi.org/10.1038/s41436-019-0666-z
        • Strande N.T.
        • Riggs E.R.
        • Buchanan A.H.
        • et al.
        Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the Clinical Genome Resource.
        Am J Hum Genet. 2017; 100: 895-906https://doi.org/10.1016/j.ajhg.2017.04.015
        • Lumaka A.
        • Race V.
        • Peeters H.
        • et al.
        A comprehensive clinical and genetic study in 127 patients with ID in Kinshasa, DR Congo.
        Am J Med Genet A. 2018; 176: 1897-1909https://doi.org/10.1002/ajmg.a.40382
        • Saad A.K.
        • Marafi D.
        • Mitani T.
        • et al.
        Neurodevelopmental disorder in an Egyptian family with a biallelic ALKBH8 variant.
        Am J Med Genet A. 2021; 185: 1288-1293https://doi.org/10.1002/ajmg.a.62100
        • Saad A.K.
        • Marafi D.
        • Mitani T.
        • et al.
        Biallelic in-frame deletion in TRAPPC4 in a family with developmental delay and cerebellar atrophy.
        Brain. 2020; 143: e83https://doi.org/10.1093/brain/awaa256
        • Duan R.
        • Saadi N.W.
        • Grochowski C.M.
        • et al.
        A novel homozygous SLC13A5 whole-gene deletion generated by Alu/Alu-mediated rearrangement in an Iraqi family with epileptic encephalopathy.
        Am J Med Genet A. 2021; 185: 1972-1980https://doi.org/10.1002/ajmg.a.62192
        • Contreras J.L.
        • Ladino M.A.
        • Aránguiz K.
        • et al.
        Immune dysregulation mimicking systemic lupus erythematosus in a patient with lysinuric protein intolerance: case report and review of the literature.
        Front Pediatr. 2021; 9: 673957https://doi.org/10.3389/fped.2021.673957
        • Aird A.
        • Lagos M.
        • Vargas-Hernández A.
        • et al.
        Novel heterozygous mutation in NFKB2 is associated with early onset CVID and a functional defect in NK cells complicated by disseminated CMV infection and severe nephrotic syndrome.
        Front Pediatr. 2019; 7: 303https://doi.org/10.3389/fped.2019.00303
        • Karaca E.
        • Harel T.
        • Pehlivan D.
        • et al.
        Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease.
        Neuron. 2015; 88: 499-513https://doi.org/10.1016/j.neuron.2015.09.048
        • Bayram Y.
        • Karaca E.
        • Coban Akdemir Z.
        • et al.
        Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin.
        J Clin Invest. 2016; 126: 762-778https://doi.org/10.1172/JCI84457
        • Pehlivan D.
        • Bayram Y.
        • Gunes N.
        • et al.
        The genomics of arthrogryposis, a complex trait: candidate genes and further evidence for oligogenic inheritance.
        Am J Hum Genet. 2019; 105: 132-150https://doi.org/10.1016/j.ajhg.2019.05.015
        • Sobreira N.L.M.
        • Arachchi H.
        • Buske O.J.
        • et al.
        Matchmaker Exchange.
        Curr Protoc Hum Genet. 2017; 95: 9.31.1-9.31.15https://doi.org/10.1002/cphg.50
        • Sobreira N.
        • Schiettecatte F.
        • Valle D.
        • Hamosh A.
        GeneMatcher: a matching tool for connecting investigators with an interest in the same gene.
        Hum Mutat. 2015; 36: 928-930https://doi.org/10.1002/humu.22844
      2. Website aims to accelerate gene discovery, diagnosis, treatment: MyGene2.org fosters open sharing among families, researchers, and clinicians.
        Am J Med Genet A. 2016; 170: 1388-1389https://doi.org/10.1002/ajmg.a.37746
        • Arachchi H.
        • Wojcik M.H.
        • Weisburd B.
        • et al.
        matchbox: an open-source tool for patient matching via the Matchmaker Exchange.
        Hum Mutat. 2018; 39: 1827-1834https://doi.org/10.1002/humu.23655
        • Rentzsch P.
        • Witten D.
        • Cooper G.M.
        • Shendure J.
        • Kircher M.
        CADD: predicting the deleteriousness of variants throughout the human genome.
        Nucleic Acids Res. 2019; 47: D886-D894https://doi.org/10.1093/nar/gky1016
        • Sobreira N.
        • Schiettecatte F.
        • Boehm C.
        • Valle D.
        • Hamosh A.
        New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene.
        Hum Mutat. 2015; 36: 425-431https://doi.org/10.1002/humu.22769
        • Liu P.
        • Meng L.
        • Normand E.A.
        • et al.
        Reanalysis of clinical exome sequencing data.
        N Engl J Med. 2019; 380: 2478-2480https://doi.org/10.1056/NEJMc1812033
        • Schmitz-Abe K.
        • Li Q.
        • Rosen S.M.
        • et al.
        Unique bioinformatic approach and comprehensive reanalysis improve diagnostic yield of clinical exomes.
        Eur J Hum Genet. 2019; 27: 1398-1405https://doi.org/10.1038/s41431-019-0401-x
        • Guo H.
        • Bettella E.
        • Marcogliese P.C.
        • et al.
        Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders.
        Nat Commun. 2019; 10: 4679https://doi.org/10.1038/s41467-019-12435-8
        • Wang M.
        • Chun J.
        • Genovese G.
        • et al.
        Contributions of rare gene variants to familial and sporadic FSGS.
        J Am Soc Nephrol. 2019; 30: 1625-1640https://doi.org/10.1681/ASN.2019020152
        • Hansen A.W.
        • Murugan M.
        • Li H.
        • et al.
        A genocentric approach to discovery of Mendelian disorders.
        Am J Hum Genet. 2019; 105: 974-986https://doi.org/10.1016/j.ajhg.2019.09.027
        • Kerner G.
        • Bouaziz M.
        • Cobat A.
        • et al.
        A genome-wide case-only test for the detection of digenic inheritance in human exomes.
        Proc Natl Acad Sci U S A. 2020; 117: 19367-19375https://doi.org/10.1073/pnas.1920650117
        • Lilleväli H.
        • Pajusalu S.
        • Wojcik M.H.
        • et al.
        Genome sequencing identifies a homozygous inversion disrupting QDPR as a cause for dihydropteridine reductase deficiency.
        Mol Genet Genomic Med. 2020; 8: e1154https://doi.org/10.1002/mgg3.1154
        • Mohammadi P.
        • Castel S.E.
        • Cummings B.B.
        • et al.
        Genetic regulatory variation in populations informs transcriptome analysis in rare disease.
        Science. 2019; 366: 351-356https://doi.org/10.1126/science.aay0256
        • Carvalho C.M.B.
        • Coban-Akdemir Z.
        • Hijazi H.
        • et al.
        Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome.
        Genome Med. 2019; 11: 25https://doi.org/10.1186/s13073-019-0633-y
        • Boycott K.M.
        • Dyment D.A.
        • Innes A.M.
        Unsolved recognizable patterns of human malformation: challenges and opportunities.
        Am J Med Genet C Semin Med Genet. 2018; 178: 382-386https://doi.org/10.1002/ajmg.c.31665
        • Dyment D.A.
        • O’Donnell-Luria A.
        • Agrawal P.B.
        • et al.
        Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome.
        Am J Med Genet A. 2021; 185: 119-133https://doi.org/10.1002/ajmg.a.61926
        • Burrage L.C.
        • Reynolds J.J.
        • Baratang N.V.
        • et al.
        Bi-allelic variants in TONSL cause SPONASTRIME dysplasia and a spectrum of skeletal dysplasia phenotypes.
        Am J Hum Genet. 2019; 104: 422-438https://doi.org/10.1016/j.ajhg.2019.01.007
        • Schrauwen I.
        • Giese A.P.
        • Aziz A.
        • et al.
        FAM92A underlies nonsyndromic postaxial polydactyly in humans and an abnormal limb and digit skeletal phenotype in mice.
        J Bone Miner Res. 2019; 34: 375-386https://doi.org/10.1002/jbmr.3594
        • Bamshad M.J.
        • Nickerson D.A.
        • Chong J.X.
        Mendelian gene discovery: fast and furious with no end in sight.
        Am J Hum Genet. 2019; 105: 448-455https://doi.org/10.1016/j.ajhg.2019.07.011
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581 (Published correction appears in Nature. 2021;590(7846):E53): 434-443
        https://doi.org/10.1038/s41586-020-2308-7
        • Logsdon G.A.
        • Vollger M.R.
        • Hsieh P.
        • et al.
        The structure, function and evolution of a complete human chromosome 8.
        Nature. 2021; 593: 101-107https://doi.org/10.1038/s41586-021-03420-7
        • Lappalainen T.
        • Scott A.J.
        • Brandt M.
        • Hall I.M.
        Genomic analysis in the age of human genome sequencing.
        Cell. 2019; 177: 70-84https://doi.org/10.1016/j.cell.2019.02.032
        • Sethi A.
        • Gu M.
        • Gumusgoz E.
        • et al.
        Supervised enhancer prediction with epigenetic pattern recognition and targeted validation.
        Nat Methods. 2020; 17: 807-814https://doi.org/10.1038/s41592-020-0907-8
        • Sisu C.
        • Muir P.
        • Frankish A.
        • et al.
        Transcriptional activity and strain-specific history of mouse pseudogenes.
        Nat Commun. 2020; 11: 3695https://doi.org/10.1038/s41467-020-17157-w
        • Esposito D.
        • Weile J.
        • Shendure J.
        • et al.
        MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect.
        Genome Biol. 2019; 20: 223https://doi.org/10.1186/s13059-019-1845-6
        • Sundaram L.
        • Gao H.
        • Padigepati S.R.
        • et al.
        Predicting the clinical impact of human mutation with deep neural networks.
        Nat Genet. 2018; 50 (Published correction appears in Nat Genet. 2019;51(2):364): 1161-1170
        https://doi.org/10.1038/s41588-018-0167
        • Jaganathan K.
        • Kyriazopoulou Panagiotopoulou S.
        • McRae J.F.
        • et al.
        Predicting splicing from primary sequence with deep learning.
        Cell. 2019; 176: 535-548.e24https://doi.org/10.1016/j.cell.2018.12.015
        • Taylor D.M.
        • Aronow B.J.
        • Tan K.
        • et al.
        The pediatric cell atlas: defining the growth phase of human development at single-cell resolution.
        Dev Cell. 2019; 49: 10-29https://doi.org/10.1016/j.devcel.2019.03.001
        • Clark M.M.
        • Stark Z.
        • Farnaes L.
        • et al.
        Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases.
        NPJ Genom Med. 2018; 3: 16https://doi.org/10.1038/s41525-018-0053-8