Background
The lysosomal storage diseases (LSDs) comprise a heterogeneous group of almost 50 disorders that are caused by genetic defects in a lysosomal acid hydrolase, receptor, activator protein, membrane protein, or transporter, causing lysosomal accumulation of substrates that are specific to each disorder. The accumulation is progressive, ultimately causing deterioration of cellular and tissue function. Many disorders affect the central nervous system (CNS) and most patients have a decreased lifespan and significant morbidity. The LSDs are often categorized according to the type of substrate stored (i.e., mucopolysaccharidoses, oligosaccharidoses, sphingolipidoses, gangliosidoses, etc.).
1.Lysosomal storage disorders: the need for better pediatric recognition and comprehensive care.
Most lysosomal proteins are the products of housekeeping genes expressed throughout the body, but storage occurs only in those cells with an available substrate (e.g., GM
2 ganglioside is present predominantly in the CNS and deficiency of hexosaminidase A, which acts on the GM
2 ganglioside and can be measured in the blood, causes Tay Sachs disease, a CNS condition). In all cases, the diagnosis must be established by specific enzyme assays and by mutational analysis. Urinary mucopolysaccharides and oligosaccharides, although useful for screening, can be normal and increased nonspecifically in healthy neonates.
2.- Piraud M.
- Boyer S.
- Mathieu M.
- Maire I.
Diagnosis of mucopolysaccharidoses in a clinically selected population by urinary glycosaminoglycan analysis: a study of 2,000 urine samples.
Although each disorder is rare, LSDs as a group have a frequency of one in 7000–8000 live births.
3.- Meikle P.J.
- Hopwood J.J.
- Clague A.E.
- Carey W.F.
Prevalence of lysosomal storage disorders.
,4.- Poorthuis B.J.
- Wevers R.A.
- Kleijer W.J.
The frequency of lysosomal storage diseases in The Netherlands.
The frequency estimate may be low as more individuals with mild disease and/or adult-onset forms of the diseases are being identified.
All LSDs are inherited in an autosomal recessive fashion, except for Fabry, Hunter (mucopolysaccharidosis type II [MPS II]) and Danon diseases, which are X-linked. Some disorders are more prevalent in certain geographic areas or among particular population groups (e.g., Gaucher, Tay-Sachs, Niemann-Pick type A, and mucolipidosis IV are more common in Ashkenazi Jews), largely as a result of ancestral founder mutations.
5.Gaucher's disease: a model for modern management of a genetic disease.
, 6.- Natowicz M.R.
- Prence E.M.
Heterozygote screening for Tay-Sachs disease: past successes and future challenges.
, 7.- Schuchman E.H.
- Miranda S.R.
Niemann-Pick disease: mutation update, genotype/phenotype correlations, and prospects for genetic testing.
For many diseases, such as Fabry, most kindreds have private mutations.
Highly effective preconception carrier screening programs for populations at risk for Tay-Sachs disease have been in place since 1971,
6.- Natowicz M.R.
- Prence E.M.
Heterozygote screening for Tay-Sachs disease: past successes and future challenges.
,8.- Becker M.H.
- Kaback M.M.
- Rosenstock I.M.
- Ruth M.V.
Some influences on public participation in a genetic screening program.
leading to a great reduction in the number of affected children born. Carrier screening of Ashkenazi Jews has been expanded to include several other hereditary disorders found at higher frequency in this group.
9.- Zinberg R.E.
- Kornreich R.
- Edelmann L.
- Desnick R.J.
Prenatal genetic screening in the Ashkenazi Jewish population.
A single clinically defined disorder may be caused by more than one enzymatic defect, such as Sanfilippo disease (MPS III), that can be caused by a deficiency in any one of four hydrolases. Conversely, a disorder caused by a single enzyme deficiency usually gives rise to a spectrum of manifestations depending on the amount of residual enzyme activity and currently unknown modifiers. The age of onset, severity of symptoms, organ systems affected, and CNS manifestations can vary markedly, sometimes even within families. Although specific mutations or types of mutations can be associated with certain outcomes, genotype-phenotype correlations are typically not strong as with Gaucher disease (GD) patients with the same mutations who may present in childhood or be asymptomatic throughout adult life.
10.- Beutler E.
- Grabowski G.A.
Gaucher disease.
For women with X-linked lysosomal storage disorders such as Fabry disease, the severity and extent of disease manifestations may be determined primarily by the degree of X-chromosomal inactivation,
11.- Desnick R.J.
- Ioannou Y.A.
- Eng C.M.
Alpha-galactosidase A deficiency: Fabry disease.
although evidence of random inactivation has been shown.
12.- Maier E.M.
- Osterrieder S.
- Whybra C.
Disease manifestations and X inactivation in heterozygous females with Fabry disease.
Diagnosis and ascertainment
Probands are typically ascertained because of clinical signs and symptoms, often after the disease is advanced and interventions less efficacious. Presymptomatic individuals, the subject of this article, may be ascertained through screening of family members of the proband, carrier screening, prenatal testing, populations at risk for a genetic disorder, or newborn screening (NBS). As will be discussed for each disorder, diagnosis depends on enzymatic or molecular definition of mutations, or both.
Treatment of LSDs
Because of their wide-ranging medical and psychosocial ramifications, LSDs require an ongoing multidisciplinary, team approach to treatment. Comprehensive management generally combines disease-specific therapy (if available) with symptom-specific measures. The team leader should be someone (generally a biochemical geneticist) who is experienced in treating LSDs, is aware of disease-specific complications and nuances of therapy, and keeps up to date with recent advances. Each patient's team should include other relevant medical specialists familiar with LSDs. Once a diagnosis is established, genetic counseling is essential to provide patients and their families with an understanding of mode of inheritance, identify at-risk family members, and discuss recurrence risks. Patient and parent support groups are invaluable sources of emotional support and practical advice.
Hematopoietic stem cell transplantation (HSCT) has been used successfully in the management of some LSDs. The rationale behind HSCT is that a reconstituted hematopoietic system from a healthy, matched donor will contain stem cells that can produce the missing enzyme. The small amounts of secreted enzyme are available to be taken up by mannose-6-phosphate receptors on other cells, endocytosed, and delivered to the lysosome. The major drawback to HSCT is its high morbidity and mortality, although both have improved over time, particularly with the use of refined conditioning regimens and cord blood as a stem cell source. Graft failure is more common in HSCT for some of the LSDs. The advantage of HSCT is that cells can integrate into many tissues, including the CNS. The disadvantages include the low level of correction and the time required for integration of the cells into other tissues, factors that currently preclude HSCT from being curative.
Specific treatments for LSDs are evolving rapidly with the involvement of an expanding number of biotechnology companies. Most widely used is enzyme replacement therapy (ERT), which supplies the missing enzyme exogenously through repeated intravenous infusions. With ERT, larger doses of enzyme can be administered than are attainable through HSCT; however, the blood-brain barrier (BBB) cannot be crossed, precluding the use of ERT for CNS disease. Even in patients with significant CNS involvement, ERT may be useful for reducing the morbidity associated with the somatic manifestations. The usefulness of ERT in the pre- and peri-HSCT period is being studied, and intrathecal ERT is being tested for MPS I and II. ERT is currently commercially available for Gaucher, Fabry, MPS I, II, VI, and Pompe diseases (PDs) and is undergoing clinical trials for MPS IVA and Niemann-Pick type B.
ERT is not without its challenges. Many patients do not produce native enzyme (and are cross-reacting immunologic material [CRIM]-negative) or make native enzyme that differs significantly from administered enzyme, and consequently make antibodies to the exogenous enzyme, which may reduce efficacy and often causes adverse infusion reactions. Fortunately, the infusion reactions are usually easy to treat, many patients develop tolerance over time, and allergic reactions are rare.
Oral therapies are available for two LSDs and more are being tested. Cysteamine is used successfully to preserve renal function in cystinosis.
13.- Gahl W.A.
- Thoene J.G.
- Schneider J.A.
- O'Regan S.
- Kaiser-Kupfer M.I.
- Kuwabara T.
NIH conference. Cystinosis: progress in a prototypic disease.
, 14.- Schneider J.A.
- Clark K.F.
- Greene A.A.
Recent advances in the treatment of cystinosis.
, 15.- Gahl W.A.
- Balog J.Z.
- Kleta R.
Nephropathic cystinosis in adults: natural history and effects of oral cysteamine therapy.
Substrate reduction therapy (SRT) with
N-butyldeoxynojirimycin (OGT-918, miglustat, Zavesca; Actelion, Basel, Switzerland) reduces production of glycosphingolipids by inhibiting glucosylceramide synthase, the first step of their biosynthesis. SRT is approved for use in GD, although side effects preclude its more widespread use,
16.- Cox T.
- Lachmann R.
- Hollak C.
Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis.
,17.- Elstein D.
- Hollak C.
- Aerts J.M.
Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease.
and Niemann-Pick type C in Europe. A new-generation agent (Genz-11638; Genzyme Corporation, Cambridge, MA) is being tested that may have fewer side effects. For SRT to reduce lysosomal storage, there must be residual enzyme activity, which is always the case in GD but not in other disorders. Unfortunately, SRT does not reduce substrate turnover, resulting in cellular depletion of these evolutionarily conserved (and presumably important) glycolipids, a fact that may ultimately limit the utility of this therapeutic approach.
Oral small molecule chaperones are compounds that improve the folding and trafficking of lysosomal proteins with specific missense mutations. Clinical trials for Fabry disease are underway (Amicus Therapeutics, Camden, NJ). PTC124 (Ataluren®, PTC Therapeutics, South Plainfield, NJ) causes the ribosome to read-through nonsense codons and yet allows the ribosome to end translation normally at the correct stop codon. This drug, currently in testing for other conditions, could be useful for some patients with LSDs caused by nonsense mutations.
Gene therapy holds the promise of a cure for LSDs. However, many hurdles must be overcome before gene therapy can be applied to the LSDs including delivery to the correct cells, random integration, sustained expression, and immune reactions.
There is currently great variability in clinical practice for LSD treatment both within and among countries. Specific areas of controversy include when (and even if) to start specific therapies, what dose to use, how to monitor patients, when to stop treatments, and what adjunctive therapies should be used. Some of the variability is based on legitimate financial concerns given the expense of many specific therapies, but much has to do with the lack of long-term longitudinal studies with sufficient numbers of patients. Many available data comes from case reports, case series, clinical trials involving small numbers of patients, and voluntary patient registries as part of industry's postmarketing commitments to the drug regulatory agencies.
For many countries, expense is a large consideration in the treatment of LSDs. Insurance plans may have a lifetime cap for drug expenses that can be rapidly exhausted with most of the available therapies. Some health systems demand that each new therapy be demonstrated to be cost-effective, a difficult challenge for these rare disorders. Some have designed special funding programs for rare disease treatments. Less affluent countries are unable to afford the drugs or routinely use a low dose. Some help is provided to many patients without resources by assistance programs from the drug companies; however, most individuals worldwide receive supportive and palliative care, at best.
Caring for presymptomatic individuals, however, diagnosed highlights the current limitations in our diagnostic evaluations and decision making. In part, the difficulty is due to the often poor correlations of residual enzyme activity and genotype with the clinical phenotype. HSCT is a consideration for some disorders that may have CNS involvement. To be effective, HSCT has to be performed well before evidence of CNS involvement. Because phenotype-genotype correlations are imperfect, it will always be uncertain whether a particular newborn will need HSCT or not. Because HSCT has significant associated mortality and long-term morbidity, deciding if and when to transplant will be a major area of clinical difficulty, as discussed in the context of the individual disorders. Other areas of difficulty include the often variable clinical response to therapy, the long time required for improvement or stabilization to be evident for those who become affected, and the general lack of large natural history studies for comparison. Most disorders lack useful and accepted biomarkers for therapeutic decision making.
Newborn screening
Early detection of LSDs can be important for patients and their families and constitutes a major rationale for instituting NBS. For several disorders, it is clear that earlier initiation of therapy can make a substantial difference in outcome. The LSDs are sufficiently rare that most practitioners are unaware of their signs and symptoms, leading to diagnostic odysseys and delayed diagnoses. By the time patients are diagnosed, they may have suffered irreversible damage, limiting the effectiveness of treatment. Many patients remain undiagnosed. A second affected child is often born before the first is diagnosed. There is much to be learned about what can be realistically achieved with earlier detection (e.g., the response of skeletal disease in MPS VI) as well as the true incidence and extent of each disease.
Testing from dried blood spots (DBSs) is now possible for several LSDs using the same blood spot sample and high-throughput platforms, making population screening technically feasible (
Table 1).
Table 1Comparison of two newborn screening assays for specific LSDs that can be determined from the same newborn screening sample
However, only few data are available that address sensitivity and specificity of these assays. Nevertheless, the Centers for Disease Control and Prevention has already produced freely available quality control DBS material for several LSDs,
21.- DeJesus V.R.
- Zhang X.K.
- Keutzer J.
Development and evaluation of quality control dried blood spot materials in newborn screening for lysosomal storage disorders.
making high-throughput screening programs feasible. NBS for some LSDs has or will begin shortly as pilot programs (Pompe and Fabry diseases in Taiwan and Fabry disease in Washington State) or as additions to established NBS programs (Krabbe disease [KD] in New York State and Krabbe, Fabry, Pompe, Niemann-Pick, and Gaucher diseases in the States of Illinois and Missouri; Austria has piloted two studies on Fabry and Pompe diseases, respectively). At the same time, Pompe and Krabbe diseases were nominated to the US Advisory Committee on Heritable Disorders of Newborns and Children for inclusion in NBS. The Advisory Committee on Heritable Disorders of Newborns and Children did not consider the evidence to be sufficient to be able to recommend their inclusion at the current time.
As with any screening program, there are many ethical considerations in screening for LSDs. Variants of uncertain significance will certainly be identified. Adult-onset variants will be identified, perhaps in greater numbers than the early infantile forms of these diseases, and some patients with these may never develop symptoms or require therapy. Identification of both novel and adult-onset variants can lead to problems with insurability, labeling someone as vulnerable from birth, excluding from military service, etc. Consumers vary in their desire to detect late-onset disorders in the neonatal period and the acceptance of anxiety that some will face during a diagnostic evaluation for a positive screen. However, experience suggests that parents of patients and older patients with delayed diagnoses are almost universal in their support for early detection. Legislative changes will be needed to protect identified individuals from discrimination and ongoing counseling and support for patients and families will be required to minimize the psychosocial effects of early detection for adult onset LSDs. In this regard, in the United States, the Genetic Information Nondiscrimination Act provides legal protection against discrimination for health insurance or employment for individuals with a presymptomatic genetic condition.
22.Legal update: living with the Genetic Information Nondiscrimination Act.
,23.Putting the Genetic Information Nondiscrimination Act in context.
Any NBS system requires an organized network of centers for definitive diagnostic tests, genetic counseling, and treatment. Generally, care of LSD patients is coordinated by biochemical geneticists or metabolic disease specialists at centers equipped to handle the complex, multidisciplinary needs of LSD patients. Such trained individuals and centers are currently in short supply. Large geographic regions are entirely lacking in the necessary expertise. Even within centers, caring for LSD patients is time consuming, often requires expertise and facilities for the treatment of children and adults, and involves a significant amount of unreimbursed time from physicians and their staff. Many private payers will not authorize follow-up visits at LSD centers, under the erroneous belief that any physician is capable and willing to deal with complex therapies and their side effects, coordinating multidisciplinary care and dealing with anxious families. Even if the patient can be seen by the appropriate specialist, they may only make recommendations for testing and treatment that is then up to the primary care physician to arrange, something many are ill-equipped or unwilling to do. Many patients must travel great distances to receive weekly or biweekly drug infusions, even if a local infusion center is available and long after home therapy could be appropriate.
Another essential component of a LSD screening program is an experienced laboratory for rapid and accurate enzymatic and molecular testing. The laboratory must incorporate appropriate quality assurance and proficiency testing programs including sample sharing between laboratories. There are currently only a few laboratories around the world with the required expertise and experience.
A final important part of a NBS program is a well-designed, monitored, longitudinal follow-up program. This will allow definition of natural history and response to therapies, providing answers to the many outstanding questions not addressed by small pilot programs, case series, and industry-sponsored registries. Such a follow-up network should have a biological repository of samples to serve as a resource for identification and validation of biomarkers and modifier genes. These are precisely the charges of the new American College of Medical Genetics (ACMG)/National Institutes of Health (NIH) Newborn Screening Translational Research Network.
Purpose
This guideline is intended as an educational resource. It highlights current practices and therapeutic approaches to the diagnosis and management of individuals who may have a LSD that is identified by NBS, family screening through a proband, or because of carrier testing in at-risk populations and subsequent prenatal or postnatal testing. Rather than discussing all LSDs, this guideline focuses on select LSDs for which a NBS test and some specific treatment are available or may become available in the near future. The goal is to provide some guidance for confirmatory testing and subsequent management as well as to define a research agenda for longitudinal studies, such as the Newborn Screening Translational Research Network being initiated by the ACMG with funding from NIH's Eunice Kennedy Shriver National Institute of Child Health and Human Development.
Target audience
This guideline is directed at a wide range of providers, although care is commonly provided by metabolic disease specialists/biochemical geneticists and neuromuscular experts.