x
Filter:
Filters applied
- ACMG Statements and Guidelines
- Klugman, SusanRemove Klugman, Susan filter
Publication Date
Please choose a date range between 2016 and 2022.
Author
- Dungan, Jeffrey S3
- Gregg, Anthony R3
- Aarabi, Mahmoud2
- Best, Robert G2
- Monaghan, Kristin G2
- Agnese, Doreen1
- Akkari, Yassmine MN1
- Bajaj, Komal1
- Bashford, Michael T1
- Benkendorf, Judith L1
- Chen, Emily1
- Daly, Mary1
- Darilek, Sandra1
- Erwin, Angelika1
- Esplin, Edward D1
- Goldwaser, Tamar1
- Jarvik, Gail P1
- Leach, Natalia T1
- Litton, Jennifer1
- Malinowski, Jennifer1
- Pal, Tuya1
- Rajkovic, Aleksandar1
- Reddi, Honey V1
- Skotko, Brian G1
ACMG Statements and Guidelines
These online statements and guidelines are definitive and may be cited using the digital object identifier (DOI). These recommendations are designed primarily as an educational resource for medical geneticists and other healthcare providers to help them provide quality medical genetics services; they should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. Please refer to the leading disclaimer in each document for more information.
5 Results
- ACMG Practice Guideline
Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG)
Genetics in MedicineVol. 25Issue 2100336Published online: December 16, 2022- Jeffrey S. Dungan
- Susan Klugman
- Sandra Darilek
- Jennifer Malinowski
- Yassmine M.N. Akkari
- Kristin G. Monaghan
- and others
Cited in Scopus: 3This workgroup aimed to develop an evidence-based clinical practice guideline for the use of noninvasive prenatal screening (NIPS) for pregnant individuals at general risk for fetal trisomy 21, trisomy 18, or trisomy 13 and to evaluate the utility of NIPS for other chromosomal disorders. - Letter to the Editor
Response to Righetti et al
Genetics in MedicineVol. 24Issue 5p1162–1163Published online: February 24, 2022- Jeffrey S. Dungan
- Mahmoud Aarabi
- Susan Klugman
- Anthony R. Gregg
Cited in Scopus: 0We thank Righetti et al1 for their interest in our article titled Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: a practice resource of the American College of Medical Genetics and Genomics (ACMG).2 We were pleased to learn that the investigators from the Australian Reproductive Genetic Carrier Screening Project (ARGCSP) are in agreement with many aspects of this practice resource. - ACMG Practice ResourceOpen Archive
Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: a practice resource of the American College of Medical Genetics and Genomics (ACMG)
Genetics in MedicineVol. 23Issue 10p1793–1806Published in issue: October, 2021- Anthony R. Gregg
- Mahmoud Aarabi
- Susan Klugman
- Natalia T. Leach
- Michael T. Bashford
- Tamar Goldwaser
- and others
Cited in Scopus: 74Carrier screening began 50 years ago with screening for conditions that have a high prevalence in defined racial/ethnic groups (e.g., Tay–Sachs disease in the Ashkenazi Jewish population; sickle cell disease in Black individuals). Cystic fibrosis was the first medical condition for which panethnic screening was recommended, followed by spinal muscular atrophy. Next-generation sequencing allows low cost and high throughput identification of sequence variants across many genes simultaneously. Since the phrase “expanded carrier screening” is nonspecific, there is a need to define carrier screening processes in a way that will allow equitable opportunity for patients to learn their reproductive risks using next-generation sequencing technology. - ACMG StatementOpen Archive
Points to consider: is there evidence to support BRCA1/2 and other inherited breast cancer genetic testing for all breast cancer patients? A statement of the American College of Medical Genetics and Genomics (ACMG)
Genetics in MedicineVol. 22Issue 4p681–685Published in issue: April, 2020- Tuya Pal
- Doreen Agnese
- Mary Daly
- Albert La Spada
- Jennifer Litton
- Myra Wick
- and others
Cited in Scopus: 18Of all cancers that develop in women in the United States, breast cancer has the highest incidence, regardless of race or ethnicity, with an estimated 271,270 new cases and 42,260 deaths during 2019.1 Approximately 5–10% of breast cancers are estimated to result from hereditary causes, the majority of which are attributed to pathogenic or likely pathogenic (P/LP) variants in the BRCA1 and BRCA2 (BRCA1/2) genes, although other variants in genes such as PALB2, TP53, PTEN, CDH1, CHEK2, and ATM contribute. - ACMG StatementOpen Access
Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics
Genetics in MedicineVol. 18Issue 10p1056–1065Published in issue: October, 2016- Anthony R. Gregg
- Brian G. Skotko
- Judith L. Benkendorf
- Kristin G. Monaghan
- Komal Bajaj
- Robert G. Best
- and others
Cited in Scopus: 452Disclaimer: This statement is designed primarily as an educational resource for clinicians to help them provide quality medical services. Adherence to this statement is completely voluntary and does not necessarily assure a successful medical outcome. This statement should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen.